The DC electrical conductivity properties of Ge60Se40-xTex alloy with x = 0, 5, 10, 15 and 20). The samples were formed in the form of discs with the thickness of 0.25–0.30 cm and the diameter of 1.5 cm. Samples were pressed under a pressure of 6 tons per cm2 , using a ton hydraulic press. They were prepared after being pressed using a ton hydraulic press using a hydraulic press. Melting point technology use to preper the samples. Continuous electrical conductivity properties were recorded from room temperature to 475 K. Experimental data indicates that glass containing 15% Te has the highest electrical conductivity allowing maximum current through the sample compared to Lu with other samples. Therefore, it is found that the DC conductivity increases with increasing Te concentration. The electrical conductivity properties show non-ohmic behavior due to the effects of temperature on the crystal structure of the samples, which indicates that the samples remain semi-conductive after partial replacement. Three conduction mechanisms are also observed for each sample at high, medium, and low temperatures. The Fermi level local and extended state densities and conductance parameters were calculated, and all were found to change with the change of Te concentration.
Purpose: aims the study to show How to be can to enhance measurement management by incorporating a risk-based approach and the six sigma method into a more thorough assessment of metrological performance. Theoretical framework: Recent literature has recorded good results in analyzing the impact of Six Sigma and risk management on the energy sector (Barrera García et al., 2022) (D'Emilia et al. 2015). However, this research came to validate and emphasize the most comprehensive assessment of metrological performance by integrating Risk management based approach and Six Sigma analysis. Design/methodology/approach: This study was conducted in Iraqi petroleum refining companies. System quality is measured in terms of sigmas, and t
... Show MoreThermal pyrolysis kinetics of virgin high-density polyethylene (HDPE) was investigated. Thermal pyrolysis of HDPE was performed using a thermogravimetric analyzer in nitrogen atmosphere under non-isothermal conditions at different heating rates 4, 7, 10 °C/min. First-order decomposition reaction was assumed, and for the kinetic analysis Kissinger-Akahira-Sunose(KAS), Flynn-Wall-Ozawa(FWO) and Coats and Redfern(CR) method were used. The obtained values of average activation energy by the KAS and FWO methods were equal to137.43 and 141.52 kJ/mol respectively, these values were considered in good agreement, where the average activation energy value obtained by CR equation methods was slightly different which equal to 153.16 kJ/
... Show MoreThe aim of this book is to present a method for solving high order ordinary differential equations with two point boundary condition of the different kind, we propose semi-analytic technique using two-point osculatory interpolation to construct polynomial solution. The original problem is concerned using two-points osculatory interpolation with the fit equal numbers of derivatives at the end points of an interval [0 , 1] . Also, we discussion the existence and uniqueness of solutions and many examples are presented to demonstrate the applicability, accuracy and efficiency of the methods by compared with conventional method .i.e. VIDM , Septic B-Spline , , NIM , HPM, Haar wavelets on one hand and to confirm the order convergence on the other
... Show MoreThe present study was conducted to evaluate the effect of different inhibitors on the corrosion rate of aluminum in 50% (v/v) ethylene glycol solution at 80°C and pH 8.0 in which the electrochemical technique of linear sweep voltammetry was employed to characterize each inhibitor function and to calculate the corrosion rate from Tafel plots generated by a computer assisted potentiostat.
It is found that both sodium dichromate and borax reduces the corrosion rate by polarizing the anodic polarization curve while sodium phosphate, potassium phosphate, and sodium benzoate reduces the corrosion rate by polarizing both the anodic and cathodic polarization curve.
When inhibitor concentration increases from I g/l up
... Show MoreIn this work the corrosion behavior of Ti-6Al-4V alloy was studied by using galvanostatic measurements at room temperature in different media which includ sodium chloride (food salt), sodium tartrate (presence in jellies, margarine, and sausage casings,etc.), sodium oxalate (presence in fruits, vegetables,etc.), acetic acid (presence in vinegar), phosphoric acid (presence in drink), sodium carbonate (presence in 7up drink,etc.), and sodium hydroxide in order to compare.
Corrosion parameters were interpreted in th
... Show MoreTitanium alloy surface properties have an essential role in the interaction of dental implants with bone, and alteration of the surface of the implant could improve osseointegration. This study was designed to investigate the effect of different heat treatment temperatures on titanium alloy surface properties for dental implants. The effect of different temperatures of heat treatment (750°C, 850°C, 950°C and 1050°C) were investigated on the surface topography, surface chemistry, titanium oxide layer thickness, blood contact angle, & blood drop diameter of titanium alloy. The disks were prepared from titanium alloy (Ti-6Al-4V) and the samples were divided into five groups depending on the different temperatures of heat treatment. The hea
... Show MoreCorrosion behavior of aluminum alloy 7025 was investigated in hydrochloric acid (pH=1) containing 0.6 mol.dm-3 NaCl in the existence and absence of diverse concentrations of sulphamethoxazole as environmentally friendly corrosion inhibitor over the temperature range (298-313)K. Electrochemical polarization method using potentiostatic technique was employed. The inhibition efficiency has been raised with increased sulphamethoxazole concentration but lessened at temperature increases. The highest efficiency value was 96.5 at 298 K and 2 x10-4 mol.dm-3 concentration of sulphamethoxazole. The sulphamethoxazole adsorption was agreed with Langmuir adsorption isotherm. Some thermodynamic parameter (△Gads) and activation energy (Ea) were determin
... Show MoreThe microstructure and wear properties of 392 Al alloy with different Mg contents were studied using centrifugal casting. All melted alloys were heated to 800 ºC and poured into the preheated centrifugal casting mold (200-250 ºC) at different mould rotational speeds (1500, 1900 and 2300 r.p.m). It is clear from the results obtained that wear rate was dependent on the Mg content, applied load and mould rotational speed. Furthermore, wear test showed that the minimum wear rate was found in the inner layer of produced rings at mould rotational speed of 1900 r.p.m and Mg content of 5%.