The DC electrical conductivity properties of Ge60Se40-xTex alloy with x = 0, 5, 10, 15 and 20). The samples were formed in the form of discs with the thickness of 0.25–0.30 cm and the diameter of 1.5 cm. Samples were pressed under a pressure of 6 tons per cm2 , using a ton hydraulic press. They were prepared after being pressed using a ton hydraulic press using a hydraulic press. Melting point technology use to preper the samples. Continuous electrical conductivity properties were recorded from room temperature to 475 K. Experimental data indicates that glass containing 15% Te has the highest electrical conductivity allowing maximum current through the sample compared to Lu with other samples. Therefore, it is found that the DC conductivity increases with increasing Te concentration. The electrical conductivity properties show non-ohmic behavior due to the effects of temperature on the crystal structure of the samples, which indicates that the samples remain semi-conductive after partial replacement. Three conduction mechanisms are also observed for each sample at high, medium, and low temperatures. The Fermi level local and extended state densities and conductance parameters were calculated, and all were found to change with the change of Te concentration.
Carbamazepine is an anticonvulsant agent which acts on the central nervous system and used for the treatment of epilepsy. Carbamazepine was formulated as an oral extended release tablets using ethyl cellulose as retardant substance. Different types of tablets additives such as cellulose materials (sodium carboxymethyl cellulose and microcrystalline cellulose ), lactose, calcium phosphate and solubilizing agents ( sodium lauryl sulphate and polyethylene glycol 6000) were utilized to study their effect on the release profile of drug from ethyl cellulose matrices. It was found that sodium carboxymethyl cellulose increased the carbamazepine release and the same effect was obtained when the same amount of microcrystalline cellulose used
... Show MorePorous silicon was prepared by using electrochemical etching process. The structure, electrical, and photoelectrical properties had been performed. Scanning Electron Microscope (SEM) observations of porous silicon layers were obtained before and after rapid thermal oxidation process. The rapid thermal oxidation process did not modify the morphology of porous layers. The unique observation was the pore size decreased after oxidation; pore number and shape were conserved. The wall size which separated between pore was increased after oxidation and that effected on charge transport mechanism of PS
Under cyclic loading, aluminum alloys exhibit less fatigue life than steel alloys of similar strength and this is considered as Achilles's heel of such alloys. A nanosecond fiber laser was used to apply high speed laser shock peening process on thin aluminum plates in order to enhance the fatigue life by introducing compressive residual stresses. The effect of three working parameters namely the pulse repetition rate (PRR), spot size (ω) and scanning speed (v) on limiting the fatigue failure was investigated. The optimum results, represented by the longer fatigue life, were at PRR of 22.5 kHz, ω of 0.04 mm and at both v's of 200 and 500 mm/sec. The research yielded significant results represented by a maximum percentage increase in the fa
... Show MoreAs we live in the era of the fourth technological revolution, it has become necessary to use artificial intelligence to generate electric power through sustainable solar energy, especially in Iraq and what it has gone through in terms of crises and what it suffers from a severe shortage of electric power because of the wars and calamities it went through. During that period of time, its impact is still evident in all aspects of daily life experienced by Iraqis because of the remnants of wars, siege, terrorism, wrong policies ruling before and later, regional interventions and their consequences, such as the destruction of electric power stations and the population increase, which must be followed by an increase in electric power stations,
... Show MoreA signature is a special identifier that confirms a person's identity and distinguishes him or her from others. The main goal of this paper is to present a deep study of the spatial density distribution method and the effect of a mass-based segmentation algorithm on its performance while it is being used to recognize handwritten signatures in an offline mode. The methodology of the algorithm is based on dividing the image of the signature into tiles that reflect the shape and geometry of the signature, and then extracting five spatial features from each of these tiles. Features include the mass of each tile, the relative mean, and the relative standard deviation for the vertical and horizontal projections of that tile. In the clas
... Show MoreA complex number is called an extended eigenvalue for an operator on a Hilbert space H if there exists a nonzero operator such that: such is called an extended eigenoperator corresponding to. The goal of this paper is to calculate extended eigenvalues and extended eigenoperators for the weighted unilateral (Forward and Backward) shift operators. We also find an extended eigenvalues for weighted bilateral shift operator. Moreover, the closedness of extended eigenvalues for the weighted unilateral (Forward and Backward) shift operators under multiplication is proven.
The efficiency evaluation of the railway lines performance is done through a set of indicators and criteria, the most important are transport density, the productivity of enrollee, passenger vehicle production, the productivity of freight wagon, and the productivity of locomotives. This study includes an attempt to calculate the most important of these indicators which transport density index from productivity during the four indicators, using artificial neural network technology. Two neural networks software are used in this study, (Simulnet) and (Neuframe), the results of second program has been adopted. Training results and test to the neural network data used in the study, which are obtained from the international in
... Show MoreSol-gel method was use to prepare Ag-SiO2 nanoparticles. Crystal structure of the nanocomposite was investigated by means of X-ray diffraction patterns while the color intensity was evaluated by spectrophotometry. The morphology analysis using atomic force microscopy showed that the average grain sizes were in range (68.96-75.81 nm) for all samples. The characterization of Ag-SiO2 nanoparticles were investigated by using Scanning Electron Microscopy (SEM). Ag-SiO2 NPs are highly stable and have significant effect on both Gram positive and negative bacteria. Antibacterial properties of the nanocomposite were tested with the use of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacteria. The results have shown antibacteri
... Show MoreRecently heavy rainfall that occurs in last decade for Baghdad city is part of climate changes effect on Iraq in general and Baghdad in particular. Rain is considered the main part in the water cycle as it enters mainly within the water system and water balance; therefore present study put of a special criterion to determine the amount of rainfall and analyzed in order to quantify the amount and the diagnosis of heavy rain. The availability of data by Iraqi Metrological Organization and Seismology (IMOS) for time period (1985/1986-2014/2015) held achieve the research objective .There are many statistical methods figure out the difference to determine the amount of rain, Climatology mean (C M) is one of them specia
... Show MoreIn this work, the electrostatic probe was utilized to estimate the density of electrons for plasma generated around reentry vehicles that have a geometrically blunt nose at high-altitude. The thermocouple uses to measured electron temperature, which is equal to the temperature of the gas, on board the MAC spacecraft. In the spacecraft backflow field, electrostatic probe measurements were taken at five separate regions 1 to 5 cm from the body of the spacecraft. Over an altitude range of 90 to 50 km with an electron density of 108 to 1012 1/cm3, respectively. The measured electron temperature ranged from 0.05 to 0.9 electron volts and the maximum re-entry velocity of the spacecraft was about 7048 m
... Show More