In this work, silver nanoparticles (AgNPs) were biosynthesized from leaves of Ziziphus mauritiana Lam. jujube plant in Iraq and tested against fungal pathogens. Extract of leaves of Z. mauritiana mixed with 10-3 M AgNO3exposed to slight sunlight for 3 days. Characterization of AgNPs was done using UV-visible spectroscopy, SPM (scanning probe microscopy) and atomic force microscopy (AFM). The change of solution color from pale brown to dark brown and the exhibited maximum peak at 445 nm accepted as an indicator to biosynthesized AgNPs. Aqueous extract of Ziziphus mauritiana is considered as biological reduced and stabilized agent for Ag+ to Ag0. AFM showed the formation of irregular shapes of AgNPs. The biosynthesized silver nanoparticles have an average of diameter of 67.19. The biosynthesized AgNPs from Z. mauritiana leaves were tested as nano-drugs against four human pathogenic fungi. The highest concentration 100% of AgNPs has 25 mm inhibition zone against Candida krusei. These nanoparticles were found to be useful to reduce Candidiasis.
In this research, we have added nano anatase TiO2 as a partial replacement of Portland cement by a weight percentage of (0.25 to 1%) for the development of properties for protection against bacteria. The control mix was made by using "the cement to sand" proportion about (1: 2.75) with the "water to cement" proportion of (0.5) to study the structure, porosity, water absorption, density, mechanical properties, as well as anti-bacterial behavior. Inspections have been done such as scanning electron microscopy (SEM), and atomic force microscope (AFM) for mortar. Experimental results showed that after the addition of Nano powders in cement mortar, the structural properties improved significantly with the development of hydration o
... Show MoreThirteen morphometric characters of catfish
Due to the low cost of both unsaturated polyester resin and the plant fibers along with protect of the environment, the wasted Carrot fibers were employed in this study to strengthen and color the resin. Carrot peels powders have been incorporated with unsaturated polyester/ natural fibers (UPE/C.F) gel coats to form a good candidate with good mechanical behaviors in different industrial applications. The wasted carrot peels fibers, were dried, crashed and milled into micro particles sizes (2.5% microns) to improve the mechanical properties (impact energy, Compressive load and Elastic Modulus) of unsaturated polyester. Micro carrot fibers (C.F) have been loaded to unsaturated fibers a
This work presents an investigation on the fabrication and characterization of Fe doped zeolitic imidazolate framework (ZIF-8) of 1:1 M ratio of Zn:Fe (Fe/Zn-ZIF-8) and adsorption performances of acquired materials. The synthesized Zn-ZIF-8, Fe-ZIF-8, and Fe/Zn-ZIF-8 materials were characterized for the phase structure, morphology, elemental analysis and surface area by using X-ray diffraction (XRD), Field emission scanning electron microscope (FESEM), Energy Dispersive X-Ray (EDX), and BET surface area, respectively. The results revealed the adsorption capacity was enhanced by incorporation of Fe into ZIF-8 structure. The CR dye adsorption capacities were 287, 219, and 412 mg/g for Zn-ZIF-8, Fe-ZIF-8, and Fe/Zn-ZIF-8 adsorbers, respectivel
... Show MoreA modified chemical method was used to prepare titanium dioxide nanoparticles (TiO2 NPs), which were diagnosed by several techniques: X-ray diffraction, Fourier transform infrared, field emission scaning electron microscopy, energy disperse X-ray, and UV-visible spectroscopy, which proved the success of the preparation process at the nanoscale level. Where the titanium oxide particles have an average particle size equal to 6.8 nm, titanium dioxide particles were used in the process of adsorption of Congo red dye from its aqueous solutions using a batch system. The titanium oxide particles gave an adsorption efficiency of Congo red dye up to more than 79 %. The experimental data of the adsorption process were analyzed with kinetic models and
... Show MoreCopper oxide (CuO) nanoparticles were synthesized through the thermal decomposition of a copper(II) Schiff-base complex. The complex was formed by reacting cupric acetate with a Schiff base in a 2:1 metal-to-ligand ratio. The Schiff base itself was synthesized via the condensation of benzidine and 2-hydroxybenzaldehyde in the presence of glacial acetic acid. This newly synthesized symmetric Schiff base served as the ligand for the Cu(II) metal ion complex. The ligand and its complex were characterized using several spectroscopic methods, including FTIR, UV-vis, 1H-NMR, 13C-NMR, CHNS, and AAS, along with TGA, molar conductivity and magnetic susceptibility measurements. The CuO nanoparticles were produced by thermally decomposing the
... Show MoreCopper oxide (CuO) nanoparticles were synthesized through the thermal decomposition of a copper(II) Schiff-base complex. The complex was formed by reacting cupric acetate with a Schiff base in a 2:1 metal-to-ligand ratio. The Schiff base itself was synthesized via the condensation of benzidine and 2-hydroxybenzaldehyde in the presence of glacial acetic acid. This newly synthesized symmetric Schiff base served as the ligand for the Cu(II) metal ion complex. The ligand and its complex were characterized using several spectroscopic methods, including FTIR, UV-vis, 1H-NMR, 13C-NMR, CHNS, and AAS, along with TGA, molar conductivity and magnetic susceptibility measurements. The CuO nanoparticles were produced by thermally decomposing the
... Show More