Preferred Language
Articles
/
qxcHUY4BVTCNdQwCGkFI
Using ANN for well type identifying and increasing production from Sa’di formation of Halfaya oil field – Iraq
...Show More Authors
Abstract<p>The current study focuses on utilizing artificial intelligence (AI) techniques to identify the optimal locations of production wells and types for achieving the production company’s primary objective, which is to increase oil production from the Sa’di carbonate reservoir of the Halfaya oil field in southeast Iraq, with the determination of the optimal scenario of various designs for production wells, which include vertical, horizontal, multi-horizontal, and fishbone lateral wells, for all reservoir production layers. Artificial neural network tool was used to identify the optimal locations for obtaining the highest production from the reservoir layers and the optimal well type. For layer SB1, the average daily production is 291.544 STB/D with the horizontal well, 441.82 STB/D with the multilateral well, and 1298.461 STB/D with the fishbone well type. Also, for the SB2 layer: 197.966, 336.9834, and 924.554 STB/D, and for the SB3 layer: 333.641, 546.6364, and 1187.159 STB/D for the same well type sequence. The cumulative production for each formation layer is 22.440 MMSTB from the horizontal well, 59.05 MMSTB from the multilateral well, and 84.895 MMSTB from the fishbone well types for the SB1 layer; 48.06, 70.1094, and 160.254 MMSTB for SB2; and 75.2764, 111.7325, and 213.1291 MMSTB for SB3 for the same well types.</p>
Scopus Clarivate Crossref
View Publication
Publication Date
Sat Jan 13 2018
Journal Name
Journal Of Engineering
Comparison Between ESP and Gas Lift in Buzurgan Oil field/Iraq
...Show More Authors

Buzurgan oil Field which is located in south of Iraq has been producing oil for five decades that caused production to drop in many oil wells. This paper provides a technical and economical comparison between the ESP and gas lift in one oil well (Bu-16) to help enhancing production and maximize revenue. Prosper software was used to build, match and design the artificial lift method for the selected well, also to predict the well behavior at different water cut values and its effect on artificial lift method efficiency. The validity of software model was confirmed by matching, where the error difference value between actual and calculated data was (-1.77%).

The ESP results showed the durability of ESP regarding th

... Show More
View Publication Preview PDF
Publication Date
Thu Jun 27 2019
Journal Name
Bulletin Of The Iraq Natural History Museum (p-issn: 1017-8678 , E-issn: 2311-9799)
MICROFACIES ANALYSIS AND BASIN DEVELOPMENT OF THE CENOMANIAN - EARLY TURONIAN SEQUENCE IN THE RAFAI, NOOR AND HALFAYA OIL FIELDS, SOUTHEASTERN IRAQ
...Show More Authors

    The stratigraphic sequence of Cenomanian-Early Turonian is composed of Ahmadi, Rumaila, and Mishrif formations in the Rifai, Noor and Halfaya Oil Fields within the Mesopotamian Zone of Iraq, which is bounded at top and bottom by unconformity surfaces. The microfacies analysis of the study wells assisted the recognition of five main environments (open marine, basinal, shallow open marine, Rudist biostrome, and lagoon); these microfacies were indicative of a normal lateral change facies from shallow water facies to deeper water and open marine sediments.

 

    Ahmadi Formation (Early Cenomanian) is characterized by open marine sediments during the transgressive conditions, and would be

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Sun Aug 31 2014
Journal Name
Arabian Journal Of Geosciences
Petroleum system modeling and risk assessments of Ad’daimah oil field: a case study from Mesan Governorate, south Iraq
...Show More Authors

View Publication
Scopus (10)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sun Dec 31 2000
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Production of Castor Oil for Medical Uses
...Show More Authors

View Publication Preview PDF
Publication Date
Thu Aug 01 2024
Journal Name
Water Practice &amp; Technology
Artificial neural network and response surface methodology for modeling oil content in produced water from an Iraqi oil field
...Show More Authors
ABSTRACT<p>The majority of the environmental outputs from gas refineries are oily wastewater. This research reveals a novel combination of response surface methodology and artificial neural network to optimize and model oil content concentration in the oily wastewater. Response surface methodology based on central composite design shows a highly significant linear model with P value &lt;0.0001 and determination coefficient R2 equal to 0.747, R adjusted was 0.706, and R predicted 0.643. In addition from analysis of variance flow highly effective parameters from other and optimization results verification revealed minimum oily content with 8.5 ± 0.7 ppm when initial oil content 991 ppm, tempe</p> ... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Nov 01 2023
Journal Name
International Society For The Study Of Vernacular Settlements
Using Modern Techniques in the Formation of Flexible Interior Spaces: Insights from Iraq
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Wed Mar 29 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Cold Cracking Technology for Crude Oil Upgrading in Qaiyarah Heavy Oil Field; Technical and Economical Evaluation
...Show More Authors

Heavy oil is classified as unconventional oil resource because of its difficulty to recover in its natural state, difficulties in transport and difficulties in marketing it. Upgrading solution to the heavy oil has positive impact technically and economically specially when it will be a competitive with conventional oils from the marketing prospective. Developing Qaiyarah heavy oil field was neglected in the last five decades, the main reason was due to the low quality of the crude oil resulted in the high viscosity and density of the crude oil in the field which was and still a major challenge putting them on the major stream line of production in Iraq. The low quality of the crude properties led to lower oil prices in the global markets

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Al-khwarizmi Engineering Journal
Development of an ANN Model for RGB Color Classification using the Dataset Extracted from a Fabricated Colorimeter
...Show More Authors

 

Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an ob

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Tue May 01 2012
Journal Name
First Eage Workshop On Iraq - Hydrocarbon Exploration And Field Development
Microfacies and Petrographic study for Yamama formation in Ratawi field
...Show More Authors

View Publication
Crossref
Publication Date
Mon Jan 13 2020
Journal Name
Day 3 Wed, January 15, 2020
Numerical Simulation of Gas Lift Optimization Using Genetic Algorithm for a Middle East Oil Field: Feasibility Study
...Show More Authors
<p>Gas-lift technique plays an important role in sustaining oil production, especially from a mature field when the reservoirs’ natural energy becomes insufficient. However, optimally allocation of the gas injection rate in a large field through its gas-lift network system towards maximization of oil production rate is a challenging task. The conventional gas-lift optimization problems may become inefficient and incapable of modelling the gas-lift optimization in a large network system with problems associated with multi-objective, multi-constrained, and limited gas injection rate. The key objective of this study is to assess the feasibility of utilizing the Genetic Algorithm (GA) technique to optimize t</p> ... Show More
View Publication
Scopus (15)
Crossref (8)
Scopus Crossref