The aim of this study is to investigate the antibacterial capabilities of different coating durations of three nanoparticle (NP) coatings: molybdenum (Mo), tantalum (Ta), and zinc oxide (ZnO), and their effects on the surface characteristics of 316L stainless steel (SS). The coated substrates underwent characterization utilizing field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectrometry (EDX), and X-ray diffractometer (XRD) techniques. The antibacterial efficacy of NPs was evaluated using the agar diffusion method. The FE-SEM and EDX images confirmed the presence of nano-sized particles of Mo, Ta, and ZnO on the surface of the substrates with perfectly symmetrical spheres and a uniform distribution of the NPs. All groups demonstrated antibacterial activity, and the ability to inhibit the growth of Streptococcus mutans and Lactobacillus acidophilus bacteria. The ZnO group had the most potent antibacterial effect, followed by the Mo group, while the Ta group had the least effect. A direct-current (DC) plasma sputtering system was used to produce nano-coatings of high purity that were homogeneous, crack-free and showed no sign of delamination. Bacterial strains exposed to Mo, Ta, and ZnO coated surfaces exhibited a significant loss of viability in a time-dependent manner. The optimum sputtering time to ensure the best antibacterial properties and preserve the resources was 1 hour (h) for Mo, 3 h for Ta and 6 h for ZnO.
The antibacterial activity of some extracts of A. eupatoria (aqueous and ethanolic) against some pathogenic bacteria (Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli ) and their activity on wound healing in rats , also the presence of some active compounds in both extracts were detected . The results showed that the ethanolic extract was more effective on inhibiting tested bacteria than the aqueous extract . P.aeruginosa was the most resistant bacteria, while highest inhibition zone appeared on E.coli (20 mm) .There was a moderate activity against S.aureus with inhibition zone 15 mm. by using ethanolic extract (10 mg/ml) . The phytochemical analysis for detection of active compounds revealed the presence of Carbohydrate
... Show MoreIn this work, the antibacterial effectiveness of face masks made from polypropylene, against Candida albicans and Pseudomonas aeruginosa pathogenic was improved by soaking in gold nanoparticles suspension prepared by a one-step precipitation method. The fabricated nanoparticles at different concentrations were characterized by UV-visible absorption and showed a broad surface Plasmon band at around 520 nm. The FE-SEM images showed the polypropylene fibres highly attached with the spherical AuNPs of diameters around 25 nm over the surfaces of the soaked fibres. The Fourier Transform Infrared Spectroscopy (FTIR) of pure and treated face masks in AuNPs conform to the characteristics bands for the polypropylene bands. There are some differences
... Show MoreBackground: The present study was carried out to compare shear bond strength of sapphire bracket bonded to zirconium surface after using different methods of surface conditioning and assessment of the adhesive remnant index. Materials and methods: The sample composed of 40 zirconium specimens divided into four groups; the first group was the control, the second group was conditioned by sandblast with aluminum oxide particle 50 μm, the third and fourth group was treated by (Nd: YAG) laser (1064nm)(0.888 Watt for 5 seconds) for the 1st laser group and (0.444 Watt for 10 seconds) for the 2nd laser group. All samples were coated by z-prime plus primer. A central incisor sapphire bracket was bonded to all samples with light cure adhesive res
... Show MoreA comparative investigation of gas sensing properties of SnO2 doped with WO3 based on thin film and bulk forms was achieved. Thin films were deposited by thermal evaporation technique on glass substrates. Bulk sensors in the shape of pellets were prepared by pressing SnO2:WO3 powder. The polycrystalline nature of the obtained films with tetragonal structure was confirmed by X-ray diffraction. The calculated crystalline size was 52.43 nm. Thickness of the prepared films was found 134 nm. The optical characteristics of the thin films were studied by using UV-VIS Spectrophotometer in the wavelength range 200 nm to 1100 nm, the energy band gap, extinction coefficient and refractive index of the thin film were 2.5 eV , 0.024 and 2.51, respective
... Show More