Sewer sediment deposition is an important aspect as it relates to several operational and environmental problems. It concerns municipalities as it affects the sewer system and contributes to sewer failure which has a catastrophic effect if happened in trunks or interceptors. Sewer rehabilitation is a costly process and complex in terms of choosing the method of rehabilitation and individual sewers to be rehabilitated. For such a complex process, inspection techniques assist in the decision-making process; though, it may add to the total expenditure of the project as it requires special tools and trained personnel. For developing countries, Inspection could prohibit the rehabilitation proceeds. In this study, the researchers proposed an alternative method for sewer sediment accumulation calculation using predictive models harnessing multiple linear regression model (MLRM) and artificial neural network (ANN). AL-Thawra trunk sewer in Baghdad city is selected as a case study area; data from a survey done on this trunk is used in the modeling process. Results showed that MLRM is acceptable, with an adjusted coefficient of determination (adj. R2) in order of 89.55%. ANN model found to be practical with R2 of 82.3% and fit the data better throughout its range. Sensitivity analysis showed that the flow is the most influential parameter on the depth of sediment deposition.
Deep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning mod
... Show MoreThis work implements the face recognition system based on two stages, the first stage is feature extraction stage and the second stage is the classification stage. The feature extraction stage consists of Self-Organizing Maps (SOM) in a hierarchical format in conjunction with Gabor Filters and local image sampling. Different types of SOM’s were used and a comparison between the results from these SOM’s was given.
The next stage is the classification stage, and consists of self-organizing map neural network; the goal of this stage is to find the similar image to the input image. The proposal method algorithm implemented by using C++ packages, this work is successful classifier for a face database consist of 20
... Show MoreCorrelation equations for expressing the boiling temperature as direct function of liquid composition have been tested successfully and applied for predicting azeotropic behavior of multicomponent mixtures and the kind of azeotrope (minimum, maximum and saddle type) using modified correlation of Gibbs-Konovalov theorem. Also, the binary and ternary azeotropic point have been detected experimentally using graphical determination on the basis of experimental binary and ternary vapor-liquid equilibrium data.
In this study, isobaric vapor-liquid equilibrium for two ternary systems: “1-Propanol – Hexane – Benzene” and its binaries “1-Propanol –
... Show MoreLost circulation or losses in drilling fluid is one of the most important problems in the oil and gas industry, and it appeared at the beginning of this industry, which caused many problems during the drilling process, which may lead to closing the well and stopping the drilling process. The drilling muds are relatively expensive, especially the muds that contain oil-based mud or that contain special additives, so it is not economically beneficial to waste and lose these muds. The treatment of drilling fluid losses is also somewhat expensive as a result of the wasted time that it caused, as well as the high cost of materials used in the treatment such as heavy materials, cement, and others. The best way to deal with drilling fluid losses
... Show MoreFor the past few years, the sediment began to accumulate in Al-Gharraf River which reduces the flow capacity of the River. In the present research, a numerical model was developed using Hec-Ras software, version 5.0.4. to simulate the flow and sediment transport in the upper reach of the river. The hydrological and cross-section data measured by the Ministry of Water Resources, for the reach located between Kut and Hai cities and having a length of 58200 m, was used to perform calibration and verification of the model. Moreover, field sampling of suspended and bed loads was gathered for five months starting from 7/2/2019, and laboratory tests of samples were conducted to be used as in
Regression analysis models are adopted by using SPSS program to predict the 28-day compressive strength as dependent variable and the accelerated compressive strength as independent variable. Three accelerated curing method was adopted, warm water (35ºC) and autogenous according to ASTM C C684-99 and the British method (55ºC) according to BS1881: Part 112:1983. The experimental concrete mix design was according to ACI 211.1. Twenty eight concrete mixes with slump rang (25-50) mm and (75-100)mm for rounded and crushed coarse aggregate with cement content (585, 512, 455, 410, 372 and 341)Kg/m3.
The experimental results showed that the acc
... Show More