The effects of T-shaped fins on the improvement of phase change materials (PCM) melting are numerically investigated in vertical triple-tube storage containment. The PCM is held in the middle pipe of a triple-pipe heat exchanger while the heat transfer fluid flows through the internal and external pipes. The dimension effects of the T-shaped fins on the melting process of the PCM are investigated to determine the optimum case. Results indicate that while using T-shaped fins improves the melting performance of the PCM, the improvement potential is mainly governed by the fin’s body rather than the head. Hence, the proposed T-shaped fin did not noticeably improve melting at the bottom of the PCM domain; additionally, a flat fin is ad
... Show MoreSix isolates of A. pullulans were collected from many sources including Hibiscus sabdariffa (Roselle), old Roofs of houses and bathroom surface that referred as Ap ros1, Ap or2, 3, 4 and Ap bs5, 6 respectively, all these isolates were identified based on morphological characteristics and nutritional physiology profiles, all were able to utilize various carbon and nitrogen sources such as glucose, xylose, sucrose, maltose, ammonium sulfate, ammonium nitrate and ammonium chloride, also they showed positive test for starch and amylase, while α-cellulose, ethanol, and methanol were could not be ass
... Show MoreTiO2 thin films were deposited by Spray Pyrolysis with thickness ((350±25) nm) onto glass substrates at (350°C), and the film was annealed at temperatures (400 and 500)°C. The structural and morphological properties of the thin films (TiO2) were investigated by X-ray diffraction, Field emission scanning electron microscopy and atomic force microscope. The gas sensor fabricated by evaporating aluminum electrodes using the annealed TiO2 thin films as an active material. The sensitivity of the sensors was determined by change the electrical resistance towards NO2 at different working temperatures (200
This study was conducted according to contract with the North Refineries Company-Baiji and deals with the hydrodesulphurization of vacuum gas oil of Kirkuk crude oil, boiling range 611-833 K. A trickle bed reactor packed with a commercial cobalt-molybdenum on alumina catalyst was used. The operating conditions were: temperature range 583-643 K, liquid hourly space velocity range 1.50-3.75 1/h, hydrogen to oil ratio about 250 l/l and pressure kept constant at 3.5MPa.
The results showed that the aromatic content decreased and sulfur removal increased with increasing temperature and decreasing space velocity. The properties (viscosity, density, flash point and carbon residue) of the products decrease with temperature increasing, but the
Gas hydrate formation poses a significant threat to the production, processing, and transportation of natural gas. Accurate predictions of gas hydrate equilibrium conditions are essential for designing the gas production systems at safe operating conditions and mitigating the problems caused by hydrates formation. A new hydrate correlation for predicting gas hydrate equilibrium conditions was obtained for different gas mixtures containing methane, nitrogen and carbon dioxide. The new correlation is proposed for a pressure range of 1.7-330 MPa, a temperature range of 273-320 K, and for gas mixtures with specific gravity range of 0.553 to 1. The nonlinear regression technique was applie
The adsorption isotherms and kinetic uptakes of CO2 were measured. Adsorption isotherms were measured at two temperatures 309 K and 333 K and over a pressure range of 1 to 7 bar. Experimental data of CO2 adsorption isotherms were modeled using Langmuir, Freundlich and Temkin. Based on coefficient of correlation it was found that Langmuir isotherm model was well suited with the experimental data of CO2 adsorption isotherms. In addition, Adsorption kinetic of CO2 mixture with N2 containing 10 % by volume CO2 and 90 % by volume N2 were determined in a temperature 36 °C and under the atmospheric pressure .When the flow rate was increased from
... Show More