We introduced the nomenclature of orthogonal G -m-derivations and orthogonal generalized G -m-derivations in semi-prime G -near-rings and provide a few essentials and enough provision for generalized G -n-derivations in semi-prime G -near-rings by orthogonal.
In this paper the queuing system (M/Er/1/N) has been considered in equilibrium. The method of stages introduced by Erlang has been used. The system of equations which governs the equilibrium probabilities of various stages has been given. For general N the probability of j stages of service are left in the system, has been introduced. And the probability for the empty system has been calculated in the explicit form.
We present the concept of maps Γ- periodi2 on Γ -near-ring S. Our main goal is to research and explore the presence and mapping traits such as h Γ –hom anti-Γ –hom, Γ –α-derivations of Γ -periodi2 on Γ- near-rings.
The present paper studies the generalized Φ- recurrent of Kenmotsu type manifolds. This is done to determine the components of the covariant derivative of the Riemannian curvature tensor. Moreover, the conditions which make Kenmotsu type manifolds to be locally symmetric or generalized Φ- recurrent have been established. It is also concluded that the locally symmetric of Kenmotsu type manifolds are generalized recurrent under suitable condition and vice versa. Furthermore, the study establishes the relationship between the Einstein manifolds and locally symmetric of Kenmotsu type manifolds.
A complete metric space is a well-known concept. Kreyszig shows that every non-complete metric space can be developed into a complete metric space , referred to as completion of .
We use the b-Cauchy sequence to form which “is the set of all b-Cauchy sequences equivalence classes”. After that, we prove to be a 2-normed space. Then, we construct an isometric by defining the function from to ; thus and are isometric, where is the subset of composed of the equivalence classes that contains constant b-Cauchy sequences. Finally, we prove that is dense in , is complete and the uniqueness of is up to isometrics
This study aims to model the flank wear prediction equation in metal cutting, depending on the workpiece material properties and almost cutting conditions. A new method of energy transferred solution between the cutting tool and workpiece was introduced through the flow stress of chip formation by using the Johnson-Cook model. To investigate this model, an orthogonal cutting test coupled with finite element analysis was carried out to solve this model and finding a wear coefficient of cutting 6061-T6 aluminum and the given carbide tool.
n this study, 25 clinical isolates of Proteus spp. were collected from urine, wounds and burns specimens from different hospitals in Baghdad city, all isolates were identified by using different bacteriological media, biochemical assays and Vitek-2 system. It was found that 15 (60%) isolates were identifies as Proteus mirabilis and 10 (40 %) isolates were Proteus vulgaris. The susceptibility of P. mirabilis and P. vulgaris isolates towards cefotaxime was (66.6 %) and (44.4 %) respectively; while the susceptibility of P. mirabilis and P. vulgaris isolates towards ceftazidime was (20%). Extended spectrum β-lactamses producing Proteus was (30.7 %). DNA of 10 isolates of P. mirabilis and 4 isolates of P. vulgaris were extracted and de
... Show MoreLet R be a commutative ring with identity 1 ¹ 0, and let M be a unitary left module over R. A submodule N of an R-module M is called essential, if whenever N ⋂ L = (0), then L = (0) for every submodule L of M. In this case, we write N ≤e M. An R-module M is called extending, if every submodule of M is an essential in a direct summand of M. A submodule N of an R-module M is called semi-essential (denoted by N ≤sem M), if N ∩ P ≠ (0) for each nonzero prime submodule P of M. The main purpose of this work is to determine and study two new concepts (up to our knowledge) which are St-closed submodules and semi-extending modules. St-closed submodules is contained properly in the class of closed submodules, where a submodule N of
... Show MoreThe definition of semi-preopen sets were first introduced by "Andrijevic" as were is defined by :Let (X , ï´ ) be a topological space, and let A ⊆, then A is called semi-preopen set if ⊆∘ . In this paper, we study the properties of semi-preopen sets but by another definition which is equivalent to the first definition and we also study the relationships among it and (open, α-open, preopen and semi-p-open )sets.
The definition of semi-preopen sets were first introduced by "Andrijevic" as were is defined by :Let (X , ï´ ) be a topological space, and let A ⊆, then Ais called semi-preopen set if ⊆∘ . In this paper, we study the properties of semi-preopen sets but by another definition which is equivalent to the first definition and we also study the relationships among it and (open, α-open, preopen and semi-p-open )sets.