The present study concentrates on the new generalizations of the Jordan curve theorem. In order to achieve our goal, new spaces namely PC-space and strong PC-space are defined and studied their properties. One of the main concepts that use to define the related classes of spaces is paracompact space. In addition, the property of being PC-space and strong PC-space is preserved by defining a new type of function so called para-perfect function.
Cabrera and Mohammed proved that the right and left bounded algebras of quotients and of norm ideal on a Hilbert space are equal to Banach algebra of all bounded linear operators on . In this paper, we prove that where is a norm ideal on a complex Banach space .
This research aims to identify the economic design techniques and materials that can be used in the implementation of cosmetic supplements to the spaces of the dwelling. The research relied on the descriptive and analytical approach by describing and analyzing models of design techniques and materials that can be used in the production of cosmetic supplements in the interior spaces of the dwelling.
The results of the research concluded that the beautification of the spaces of the dwelling is one of the necessary and important pieces to add aesthetic touches to the internal spaces, and that the use of economic design techniques and materials contributes to the implementation of many pieces of complementary beautification of the
In this paper, we introduce and study new types of soft open sets and soft closed
sets in soft bitopological spaces (X,~ ,~ ,E) 1 2 , namely, (1,2)*-maximal soft open
sets, (1,2)*-maximal soft (1,2)*-pre-open sets, semi (1,2)*-maximal soft (1,2)*-preopen
sets, (1,2)*-maximal soft closed sets, (1,2)*-maximal soft (1,2)*-pre-closed
sets, (1,2)*-minimal soft open sets, (1,2)*-minimal soft (1,2)*-pre-open sets, (1,2)*-
minimal soft closed sets, (1,2)*-minimal soft (1,2)*-pre-closed sets, and semi (1,2)*-
minimal soft (1,2)*-pre-closed sets. Also, properties and the relation among these
concepts have been studied.