Abstract: In the current research the absorption and fluorescence spectrum of Coumarin (334) and Rhodamine (590) in ethanol solvent at different concentration (10-3, 10-4, 10-5) M had been studied. The absorption intensity of these dyes increases as the Concentration increase in addition to that the spectrum was shifted towards the longer wavelength (red shift). The energy transfer process has been investigated after achievement this condition. The fluorescence peak intensity of donor molecule was decrease and its bandwidth will increases on the contrary of the acceptor molecule its intensity increase gradually and its bandwidth decreases as the acceptor concentration increase.
In the current research, we investigated the absorption spectrum for R590 and C480 dyes in ethanol solvent for different dye solution concentrations of 10-4, 10-5 and 10-6M. These dyes have been prepared and studied before and after gamma irradiation (first, second ionization) using cesium-137 source with absorbed doses of 18.36 Gy (time exposure of 10 days) and 73.44 Gy (with time exposure of 40 days). We noticed that the absorption intensity was decreased with decreasing concentration, before gamma irradiation while the absorption spectrum peak shifted towards the short wavelength (blue shift). It was also found that the intensity of absorption spectrum increased and shifted the absorption spectrum peak towards the long wavelength (red
... Show MoreThe fouling depositions of crude oil stream were studied theoretically in a shell and tube heat exchanger to investigate the effect of depositions on the heat transfer process. The employed heat exchanger was with steam flowing in the inner tubes and crude oil in the shell at different velocities and bulk temperatures. It is assumed that fouling occurs only on the heated stream side (crude oil). The analysis was carried out for turbulent flow heat transfer conditions with wide range of Reynolds number, bulk temperature and time. Many previously proposed models for fouling resistance were employed to estimate a new model for fouling rate. It is found that the fouling rate and consequently the heat transfer coefficient were affected by Rey
... Show MoreThe present research focuses on the study of the effect of mass transfer resistance on the rate of heat transfer in pool boiling. The nucleate pool boiling heat transfer coefficients for binary mixtures (ethanol-n-butanol, acetone-n-butanol, acetone-ethanol, hexane-benzene, hexane-heptane, and methanol-water) were measured at different concentrations of the more volatile components. The systems chosen covered a wide range of mixture behaviors.
The experimental set up for the present investigation includes electric heating element submerged in the test liquid mounted vertically. Thermocouple and a digital indictor measured the temperature of the heater surface. The actual heat transfer rate being obtained by multiplying the voltme
... Show MoreThe charge transfer at C23H17F8N8O2PRu, C44H30BF4N5O4Ru, C56H52CL5N5OOsP2 and C76H88F80N24O11P10Ru4 nitrosyl complexes are investigation and studies theoretically using the quantum consideration. Charge transfer behavior largely rely to the electric properties of nitrosyl complexes system whose depending on the main important parameters for the transmission rate constant such that: orientation transition energy, overlapping coupling coefficient, driving force energy, height barrier and Temperature T (K). Data results have been evaluated using a MATLAB program. Results show that rate of charge transfer increases due to increases the orientation transition energy.
This report explores emerging techniques to boost multimedia transfer effectiveness, given the escalating need for improved quality and performance in multimedia interactions. The analysis involves a thorough literature assessment and comparison of present strategies to pinpoint key tendencies and propose novel approaches. The methodology involves examining recent technological enhance ments in video coding standards, quality appraisal methods, and compression tech niques. Specific domains investigated comprise firmware component architectures, 4D indexing structures, and iterative filtering frameworks. The study in addition weighs tradeoffs between video quality, encoding intricacy, and bitrate demands. Key determinations consist of
... Show MoreThe thermal performance of three solar collectors with 3, 6 mm and without perforation absorber plate was assessed experimentally. The experimental tests were implemented in Baghdad during the January and February 2017. Five values of airflow rates range between 0.01 – 0.1 m3/s were used through the test with a constant airflow rate during the test day. The variation of the following parameters air temperature difference, useful energy, absorber plate temperature, and collector efficiency was recorded every 15 minutes. The experimental data reports that the increases the number of absorber plate perforations with a small diameter is more efficient rather than increasing the hole diameter of the absorber plate with decr
... Show MoreIn this work, the design and implementation of a smart energy metering system has been developed. This system consists of two parts: billing center and a set of distributed smart energy meters. The function of smart energy meter is measuring and calculating the cost of consumed energy according to a multi-tariff scheme. This can be effectively solving the problem of stressing the electrical grid and rising consumer awareness. Moreover, smart energy meter decreases technical losses by improving power factor. The function of the billing center is to issue a consumer bill and contributes in locating the irregularities on the electrical grid (non-technical losses). Moreover, it sends the switch off command in case of the consumer bill is not
... Show MoreThe energy expectation values for Li and Li-like ions ( , and ) have been calculated and examined within the ground state and the excited state in position space. The partitioning technique of Hartree-Fock (H-F) has been used for existing wave functions.
The purpose of the present work is to calculate the expectation value of potential energy for different spin states (??? ? ???,??? ? ???) and compared it with spin states (??? , ??? ) for lithium excited state (1s2s3s) and Li- like ions (Be+,B+2) using Hartree-Fock wave function by partitioning techanique .The result of inter particle expectation value shows linear behaviour with atomic number and for each atom and ion the shows the trend ??? < ??? < ??? < ???