This paper proposes and tests a computerized approach for constructing a 3D model of blood vessels from angiogram images. The approach is divided into two steps, image features extraction and solid model formation. In the first step, image morphological operations and post-processing techniques are used for extracting geometrical entities from the angiogram image. These entities are the middle curve and outer edges of the blood vessel, which are then passed to a computer-aided graphical system for the second phase of processing. The system has embedded programming capabilities and pre-programmed libraries for automating a sequence of events that are exploited to create a solid model of the blood vessel. The gradient of the middle curve is adopted to steer the vessel’s direction, while the cross-sections of the blood vessel are formed as a sequence of circles lying in planes that are orthogonal to the gradients of the middle curves. The radii for the circles are estimated as a distance between the intersection points of the blood vessel edges with the orthogonal plane to the middle curve gradient. The system then uses these circles and the middle curve gradients to produce a solid volume that represents the 3D shape of the blood vessel. The method was tested and evaluated using different cases of angiogram images, and showed a reasonable agreement between the generated shapes and the tested images.
Elliptic Curve Cryptography (ECC) is one of the public key cryptosystems that works based on the algebraic models in the form of elliptic curves. Usually, in ECC to implement the encryption, the encoding of data must be carried out on the elliptic curve, which seems to be a preprocessing step. Similarly, after the decryption a post processing step must be conducted for mapping or decoding the corresponding data to the exact point on the elliptic curves. The Memory Mapping (MM) and Koblitz Encoding (KE) are the commonly used encoding models. But both encoding models have drawbacks as the MM needs more memory for processing and the KE needs more computational resources. To overcome these issues the proposed enhanced Koblitz encodi
... Show More Today, the use of iris recognition is expanding globally as the most accurate and reliable biometric feature in terms of uniqueness and robustness. The motivation for the reduction or compression of the large databases of iris images becomes an urgent requirement. In general, image compression is the process to remove the insignificant or redundant information from the image details, that implicitly makes efficient use of redundancy embedded within the image itself. In addition, it may exploit human vision or perception limitations to reduce the imperceptible information.
This paper deals with reducing the size of image, namely reducing the number of bits required in representing the
In every system of security, to keep important data confidential, we need a high degree of protection. Steganography can be defined as a way of sending confidential texts through a secure medium of communications as well as protecting the information during the process of transmission. Steganography is a technology that is used to protect users' security and privacy. Communication is majorly achieved using a network through SMS, e-mail, and so on. The presented work suggested a technology of text hiding for protecting secret texts with Unicode characters. The similarities of glyphs provided invisibility and increased the hiding capacity. In conclusion, the proposed method succeeded in securing confidential data and achieving high p
... Show MoreThe biometric-based keys generation represents the utilization of the extracted features from the human anatomical (physiological) traits like a fingerprint, retina, etc. or behavioral traits like a signature. The retina biometric has inherent robustness, therefore, it is capable of generating random keys with a higher security level compared to the other biometric traits. In this paper, an effective system to generate secure, robust and unique random keys based on retina features has been proposed for cryptographic applications. The retina features are extracted by using the algorithm of glowworm swarm optimization (GSO) that provides promising results through the experiments using the standard retina databases. Additionally, in order t
... Show MoreThe industrial factory is one of the challenging environments for future wireless communication systems, where the goal is to produce products with low cost in short time. This high level of network performance is achieved by distributing massive MIMO that provides indoor networks with joint beamforming that enhances 5G network capacity and user experience as well. Judging from the importance of this topic, this study introduces a new optimization problem concerning the investigation of multi-beam antenna (MBA) coverage possibilities in 5G network for indoor environments, named Base-station Beams Distribution Problem (BBDP). This problem has an extensive number of parameters and constrains including user’s location, required d
... Show More