This paper proposes and tests a computerized approach for constructing a 3D model of blood vessels from angiogram images. The approach is divided into two steps, image features extraction and solid model formation. In the first step, image morphological operations and post-processing techniques are used for extracting geometrical entities from the angiogram image. These entities are the middle curve and outer edges of the blood vessel, which are then passed to a computer-aided graphical system for the second phase of processing. The system has embedded programming capabilities and pre-programmed libraries for automating a sequence of events that are exploited to create a solid model of the blood vessel. The gradient of the middle curve is adopted to steer the vessel’s direction, while the cross-sections of the blood vessel are formed as a sequence of circles lying in planes that are orthogonal to the gradients of the middle curves. The radii for the circles are estimated as a distance between the intersection points of the blood vessel edges with the orthogonal plane to the middle curve gradient. The system then uses these circles and the middle curve gradients to produce a solid volume that represents the 3D shape of the blood vessel. The method was tested and evaluated using different cases of angiogram images, and showed a reasonable agreement between the generated shapes and the tested images.
The study of the future of the international system currently appears, according to scientific data and existing facts in light of the emergence of international actors from non-states and international informal institutions, to be heading towards a non-polarity system and this trend is fueled by many variables to reduce polarity, and it is expected in the future that the international system will turn into a non-polarity.
In this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. A physical model was manufactured to simulate steady state harmonic load at different operating frequencies. The effect of relative density, depth of embedment, foundation area as well as the imposed harmonic load was investigated. It was found that the amplitude of displacement of the foundation increases with increasing the amplitude of dynamic force and operating frequency meanwhile it decreases with increasing the relative density of sand, degree of saturation, depth of embedment and contact area of footing. The maximum displacement was noticed at 33.34 to 41.67 Hz. The maximum displaceme
... Show MoreIn this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. A physical model was manufactured to simulate steady state harmonic load at different operating frequencies. The effect of relative density, depth of embedment, foundation area as well as the imposed harmonic load was investigated. It was found that the amplitude of displacement of the foundation increases with increasing the amplitude of dynamic force and operating frequency meanwhile it decreases with increasing the relative density of sand, degree of saturation, depth of embedment and contact area of footing. The maximum displacement was noticed at 33.34 to 41.67 Hz. The maximum displacement amplitude respons
... Show MoreThe aim of this study is to investigate the feasibility of underground storage of gas in Um El-Radhuma formation /Ratawi field. This formation is an aquifer consisting of a high permeable dolomitebeds overlain by impermeable anhydrite bed of Rus formation. Interactive petrophysics (IP), Petrel REand Eclipse 100 softwares were used to conduct a well log interpretation, build a reservoir simulationmodel and predict the reservoir behavior during storage respectively. A black oil, three dimensionaland two phase fluid model has been used. The results showed that the upper part of Um El-Radhumaformation is suitable for underground gas storage, because of the seal of its cap rock and capability ofreserving gas in the reservoir. It was foun
... Show MoreShiranish has been studied at Hijran section near Erbil city, NE Iraq. Fifty two thin-sections were prepared to study them under polarized microscope, to determine the petrographic component, organic content and digenetic processes. Rock units subdivided into four rock beds, as follows: dolostone, foraminiferal biomicrite, poorly washed biomicrite and micrite. Vertical succession of Shiranish Formation refers to off-shore quite marine environment.
Some new mono isoimides of asymmetrical pyromillitdiimide derived from pyromellitic dianhydride were synthesized and studied by their melting points, FTIR, and 1HNMR spectroscopy and CHN analysis (for some of them) and it was proved that the mechanism of the formation of these isoimides followed, the mechanism suggested by Cotter et al. by using N, N─-dicyclohexylcarbodiimide as dehydrating agent, in spite of the groups attached to the phenyl moiety as mentioned in literatures.
This paper includes studying the microfacies evalution of Mauddud Formaion in
four wells(Rt-2, Rt-5, Rt17 and Rt-19). Seventy-seven(77) sampels were collected
of above mentioned wells. Based on fossil content of the samples under study, four
main microfacies were identified: packstone , wakestone , grainstone and lime
mudstone microfacies ,which deposited in shallow open marine and restricted
marine environments. Petrographic examination of thin section indicated that
diagenesis vary in intensity from one site to another, such as dissolution,
cementation, compaction, dolomitization and micritization, which led to the
improvement and deterioration of porosity. The dominant pore types are vuggy,
interparticle and
Six main microfacies are identified which are Lime Mudstone, Bioclastic Wackeston, Bioclastic Packstone-Wackestone, Bioclastic Wackestone- Mudestone, Pelagic Mudstone–Wackestone, Bioclastic Packstone -Grainston Microfacies in addition to their associated depositional environment. The diagenesis process have affected the Mishrif rocks and played a role in deteriorating reservoir porosity in well Ga-2 and enhancing it in well Ga1,3.These processes include: cementation, micritization, recrystallization,dissolution,compaction pressure solution and dolomitization.