For structural concrete members that may expose to serious earthquake, overload or accident impact, the design of ductility must be given the same importance as the flexural strength. The aim of this investigation is to study the change in ductility of structural concrete flexural members during their exposure to limited cycles of repeated loading. Twenty full-scale beam specimens have been fabricated in to two identical groups; each group consisted of ten specimens. The first group was tested under monotonic static loading to failure and regarded as control beams, while the specimens of the second group were subjected to ten cycles of repeated loading with constant load interval, which ranged between 40% and 60% of ultimate load. Specimens in each group were categorized as follows: two traditional reinforced concrete specimens with different intensity of tension reinforcement; three partially prestressed specimens with bonded strands; three partially prestressed specimens with unbonded strands; and two fully prestressed concrete specimens. The main variable, which was considered for all specimens was the partial prestressing ratio (PPR). It was observed that, the ductility of reinforced concrete beams was insignificantly increased during subjecting to limited repeated loading. For fully prestressed and partially prestressed concrete beams with high level of PPR, the ductility was significantly enhanced, while, it was decreased for specimens with small level of PPR.
Near surface mounted (NSM) carbon fibers reinforced polymer (CFRP) reinforcement is one of the techniques for reinforcing masonry structures and is considered to provide significant advantages. This paper is composed of two parts. The first part presents the experimental study of brick masonry walls reinforced with NSM CFRP strips under combined shear-compression loads. Masonry walls have been tested under vertical compression, with different bed joint orientations 90° and 45° relative to the loading direction. Different reinforcement orientations were used including vertical, horizontal, and a combination of both sides of the wall. The second part of this paper comprises a numerical analysis of unreinforced brick masonry (URM) wa
... Show MoreThis paper investigated the fatigue life behavior of two composite materials subjected to different times of shot peening (2, 4 and 6 min).The first material prepared from unsaturated polyester with E-glass reinforcement by 33% volume fraction. While, the second one was prepared from unsaturated polyester with aluminum powder by2.5% volume fraction. The experimental results showed that the improvement in endurance limit was obtained (for the first material) at 2, 4 and 6 min shot peening times where the percentage of maximum improvement was 25% at shot peening time of 6 min. While, the endurance limit of the second material decreased at shot peening times of 2, 4 and 6 min where the percentage of maximum reduction was 29 % at shot peenin
... Show MoreCircular thin walled structures have wide range of applications. This type of structure is generally exposed to different types of loads, but one of the most important types is a buckling. In this work, the phenomena of buckling was studied by using finite element analysis. The circular thin walled structure in this study is constructed from; cylindrical thin shell strengthen by longitudinal stringers, subjected to pure bending in one plane. In addition, Taguchi method was used to identify the optimum combination set of parameters for enhancement of the critical buckling load value, as well as to investigate the most effective parameter. The parameters that have been analyzed were; cylinder shell thickness, shape of stiffeners section an
... Show MoreMulti-belled piles are piles with enlarged ends; these piles have one or further bells at the lower third part of the pile. These piles are suitable for many soils with problems such as softening clay, the variation of groundwater table, expansive soils, black cotton soil, and loose sand. The current study reviewed the behavior of belled piles in multi-layer soils subjected to axial compression and pullout loading. The review covered the experimental and theoretical works on belled piles in multi-layered soils. These piles were subjected to static and dynamic loadings in compression and pullout cases. Most theoretical results focused on software such as PLAXIS 3D. The axial load applied on the piles comes from the upper
... Show MoreConcrete is the main construction material of many structures. Exposing to loads creates cracks in concrete, which reduce the performance and durability. The decrease of concrete cracks becomes a necessity demand to ensure more durability and structural integrity of the concrete structure. Autogenous healing concrete is a kind of new smart concretes, which has the ability to reclose its cracks by means of itself. Concrete self-healing is a type of free repairs processes, which is reduce direct and indirect cost of maintenance and repairing. This work targets to inspect the mechanical properties of concrete after using two combinations of two materials (20 kg/m3 calcium hydroxide Ca(OH
Concrete columns with hollow-core sections find widespread application owing to their excellent structural efficiency and efficient material utilization. However, corrosion poses a challenge in concrete buildings with steel reinforcement. This paper explores the possibility of using glass fiber-reinforced polymer (GFRP) reinforcement as a non-corrosive and economically viable substitute for steel reinforcement in short square hollow concrete columns. Twelve hollow short columns were meticulously prepared in the laboratory experiments and subjected to pure axial compressive loads until failure. All columns featured a hollow square section with exterior dimensions of (180 × 180) mm and 900 mm height. The columns were categorized into
... Show MoreIn this work, the geomagnetic storms that occurred during solar cycles 23 and 24 were classified based on the value of the Disturbance Storm Time index (Dst), which was considered an indicator of the strength of geomagnetic conditions. The special criterion of Dst >-50 nT was adopted in the classification process of the geomagnetic storms based on the minimum daily value of the Dst-index. The number of geomagnetic storms that occurred during the study period was counted according to the adopted criteria, including moderate storms with (Dst >-50 nT), strong storms with (Dst >-100 nT), severe storms with (Dst >-200 nT), and great storms with (Dst >-350 nT). The statistica
The primary components of successful engineering projects are time, cost, and quality. The use of the ring footing ensures the presence of these elements. This investigation aims to find the optimum number of geogrid reinforcement layers under ring footing subjected to inclined loading. For this purpose, experimental models were used. The parameters were studied to find the optimum geogrid layers number, including the optimum geogrid layers spacing and the optimum geogrid layers number. The optimum geogrid layers spacing value is 0.5B. And as the load inclination angle increased, the tilting and the tilting improvement percent for the load inclination angles (5°,10°,15°) are (40%,28%, and 5%) respectively. The reduction percent of the
... Show MoreThe primary components of successful engineering projects are time, cost, and quality. The use of the ring footing ensures the presence of these elements. This investigation aims to find the optimum number of geogrid reinforcement layers under ring footing subjected to inclined loading. For this purpose, experimental models were used. The parameters were studied to find the optimum geogrid layers number, including the optimum geogrid layers spacing and the optimum geogrid layers number. The optimum geogrid layers spacing value is 0.5B. And as the load inclination angle increased, the tilting and the tilting improvement percent for the load inclination angles (5°,10°,15°) are (40%,28%, and 5%) respectively. The reduction percent o
... Show MoreThe aim of this paper is to determine the flexural moment capacity of Reactive Powder Concrete (RPC) two-way slabs based on three models proposed by previous studies (Model 1, Model 2, and Model 3). The results obtained from these models were compared with those obtained from experimental work to check the accuracy and the applicability of the adopted theoretical models. The experimental program included the testing of three simply supported RPC two-way slabs (1000x1000x70) mm each. The tested specimens had identical properties except their steel fibres volume ratios (0.5 %, 1 %, and 1.5 %). The comparison with the experimental data showed that (Model 3) is the most suitable one among the three models. Model 1 was found to underestimate the
... Show More