Preferred Language
Articles
/
qYamo4YBIXToZYAL1ZtX
Kinetic, thermodynamic, and equilibrium biosorption of Pb(II), Cu(II), and Ni(II) using dead mushroom biomass under batch experiment
...Show More Authors

In this study, a low-cost biosorbent, dead mushroom biomass (DMB) granules, was used for investigating the optimum conditions of Pb(II), Cu(II), and Ni(II) biosorption from aqueous solutions. Various physicochemical parameters, such as initial metal ion concentration, equilibrium time, pH value, agitation speed, particles diameter, and adsorbent dosage, were studied. Five mathematical models describing the biosorption equilibrium and isotherm constants were tested to find the maximum uptake capacities: Langmuir, Freundlich, Redlich-Peterson, Sips, and Khan models. The best fit to the Pb(II) and Ni(II) biosorption results was obtained by Langmuir model with maximum uptake capacities of 44.67 and 29.17 mg/g for these two ions, respectively, whereas for Cu(II), the corresponding value was 31.65 mg/g obtained with Khan model. The kinetic study demonstrated that the optimum agitation speed was 400 rpm, at which the best removal efficiency and/or minimum surface mass transfer resistance (MSMTR) was achieved. A pseudo-second-order rate kinetic model gave the best fit to the experimental data (R2 = 0.99), resulting in MSMTR values of 4.69× 10−5, 4.45× 10−6, and 1.12× 10−6 m/s for Pb(II), Cu(II), and Ni(II), respectively. The thermodynamic study showed that the biosorption process was spontaneous and exothermic in nature.

Crossref
Publication Date
Sat Jan 01 2011
Journal Name
Journal Of Engineering
FILTRATION MODELING USING ARTIFICIAL NEURAL NETWORK (ANN)
...Show More Authors

In this research Artificial Neural Network (ANN) technique was applied to study the filtration process in water treatment. Eight models have been developed and tested using data from a pilot filtration plant, working under different process design criteria; influent turbidity, bed depth, grain size, filtration rate and running time (length of the filtration run), recording effluent turbidity and head losses. The ANN models were constructed for the prediction of different performance criteria in the filtration process: effluent turbidity, head losses and running time. The results indicate that it is quite possible to use artificial neural networks in predicting effluent turbidity, head losses and running time in the filtration process, wi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Feb 01 2015
Journal Name
International Journal Of Computer Science And Mobile Computing
SPRITE REGION ALLOCATION USING MOTION COMPENSATION TECHNIQUE
...Show More Authors

In this paper, the developed sprite allocation method is designed to be coherent with the introduced block-matching method in order to minimize the allocation process time for digital video. The accomplished allocation process of sprite region consists of three main steps. The first step is the detection of sprite area; where the sequence of frames belong to Group of Video sequence are analysed to detect the sprite regions which survive for long time, and to determine the sprite type (i.e., whether it is static or dynamic). Then as a second step, the flagged survived areas are passed through the gaps/islands removal stage to enhance the detected sprite areas using post-processing operations. The third step is partitioning the sprite area in

... Show More
View Publication Preview PDF
Publication Date
Wed Sep 01 2021
Journal Name
Baghdad Science Journal
Fuzzy-assignment Model by Using Linguistic Variables
...Show More Authors

      This work addressed the assignment problem (AP) based on fuzzy costs, where the objective, in this study, is to minimize the cost. A triangular, or trapezoidal, fuzzy numbers were assigned for each fuzzy cost. In addition, the assignment models were applied on linguistic variables which were initially converted to quantitative fuzzy data by using the Yager’sorankingi method. The paper results have showed that the quantitative date have a considerable effect when considered in fuzzy-mathematic models.

View Publication Preview PDF
Scopus (6)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Mon Jun 22 2020
Journal Name
Baghdad Science Journal
Using Evolving Algorithms to Cryptanalysis Nonlinear Cryptosystems
...Show More Authors

            In this paper, new method have been investigated using evolving algorithms (EA's) to cryptanalysis one of the nonlinear stream cipher cryptosystems which depends on the Linear Feedback Shift Register (LFSR) unit by using cipher text-only attack. Genetic Algorithm (GA) and Ant Colony Optimization (ACO) which are used for attacking one of the nonlinear cryptosystems called "shrinking generator" using different lengths of cipher text and different lengths of combined LFSRs. GA and ACO proved their good performance in finding the initial values of the combined LFSRs. This work can be considered as a warning for a stream cipher designer to avoid the weak points, which may be f

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2018
Journal Name
International Journal Of Data Mining, Modelling And Management
Association rules mining using cuckoo search algorithm
...Show More Authors

Association rules mining (ARM) is a fundamental and widely used data mining technique to achieve useful information about data. The traditional ARM algorithms are degrading computation efficiency by mining too many association rules which are not appropriate for a given user. Recent research in (ARM) is investigating the use of metaheuristic algorithms which are looking for only a subset of high-quality rules. In this paper, a modified discrete cuckoo search algorithm for association rules mining DCS-ARM is proposed for this purpose. The effectiveness of our algorithm is tested against a set of well-known transactional databases. Results indicate that the proposed algorithm outperforms the existing metaheuristic methods.

View Publication Preview PDF
Scopus (8)
Crossref (3)
Scopus Crossref
Publication Date
Thu Nov 01 2018
Journal Name
2018 1st Annual International Conference On Information And Sciences (aicis)
Speech Emotion Recognition Using Minimum Extracted Features
...Show More Authors

Recognizing speech emotions is an important subject in pattern recognition. This work is about studying the effect of extracting the minimum possible number of features on the speech emotion recognition (SER) system. In this paper, three experiments performed to reach the best way that gives good accuracy. The first one extracting only three features: zero crossing rate (ZCR), mean, and standard deviation (SD) from emotional speech samples, the second one extracting only the first 12 Mel frequency cepstral coefficient (MFCC) features, and the last experiment applying feature fusion between the mentioned features. In all experiments, the features are classified using five types of classification techniques, which are the Random Forest (RF),

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Detecting Textual Propaganda Using Machine Learning Techniques
...Show More Authors

Social Networking has dominated the whole world by providing a platform of information dissemination. Usually people share information without knowing its truthfulness. Nowadays Social Networks are used for gaining influence in many fields like in elections, advertisements etc. It is not surprising that social media has become a weapon for manipulating sentiments by spreading disinformation.  Propaganda is one of the systematic and deliberate attempts used for influencing people for the political, religious gains. In this research paper, efforts were made to classify Propagandist text from Non-Propagandist text using supervised machine learning algorithms. Data was collected from the news sources from July 2018-August 2018. After annota

... Show More
View Publication Preview PDF
Scopus (21)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Fri Mar 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
Balancing the Multi Assembly line Using Ranked Positional Weight and COMSOAL Algorithms: Case Study at the Sewing line Factory (7) /the General Company for Leather Industries (GCLI/ Baghdad)
...Show More Authors

      The problem of multi assembly line balancing appears as one of the most prominent and complex type of problem. The research problem of this dissertation is concerned with choosing the suitable method that includes the nature of the processes of the multi assembly type of the sewing line at factory no. (7). The State Company for Leather Manufacturing. The sewing line currently suffers from idle times at work stations which resulted in low production levels that do not meet the production plans. The authors have devised a flexible simulation model which uses the uniform distribution to generate task time for each shoe type produced by the factory. The simulation of the multi assembly line was based on assigni

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Nov 05 2018
Journal Name
Iraqi National Journal Of Nursing Specialties
Evaluation of Aqueous and Ethanolic Extraction for Coriander Seeds, Leaves and Stems and Studying their Antibacterial Activity
...Show More Authors

Objective: To evaluate two kinds of extraction (aqueous and ethanolic) for coriander using seeds, leaves and stems and
studying their antibacterial activity against nine different microorganisms.
Methodology: Coriander was selected to carry out this study. Seeds, leaves and stems were collected from local markets in
Baghdad then dried in shade for at least 10 days and grinded to fine powder. Aqueous hot extracts for 1hr. at (50
c) and
cold extracts for 24 hrs at (4
c) were performed by using seeds, leaves and stems then studied antibacterial effect against
nine different microorganisms by using well diffusion technique. Cold aqueous extracts of coriander seeds for 48 hrs. and
72 hrs and ethanolic extraction

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 01 2013
Journal Name
Advances In Physics Theories And Applications
Analysis and Assessment of Essential Toxic Heavy Metals, PH and EC in Ishaqi River and Adjacent Soil
...Show More Authors

This research was conducted to determine content levels of heavy metal pollution. Samples taken from Ishaqi River bank and adjacent agricultural soils area, in ten sites, distributed along 48 km of the Ishaqi River, north Baghdad. The evaluated metals were Zinc, Copper, Manganese, Iron, Cobalt, Nickel, Chromium, Cadmium, Vanadium and Lead. PH and Electric Conductivity (EC) were measured to evaluate the acidity and (EC). Results showed that most site were contaminated with metals evaluated. Among these metals, Zn, Mn, Fe and Ni were consistently higher in all the samples (both river bank and adjacent soil) followed by PB, CU, V, Cd, Co and Cr. The level concentrations of river bank were almost higher than that of adjacent soil. As will be re

... Show More
Preview PDF