Self-compacting concrete (SCC) has undergone a remarkable evolution recently based on the results from several studies that have indicated the chain of benefits SCC provides. Micro and nano materials used as mineral additives in SCC offer several high-performance properties, and this research studies the effects of micro silica (MS) (10%, used as a reference) and colloidal nano-silica (CNS) (2.5%, 5%, 7.5%, and 10%) on the fresh and hardened properties of SCC. All mixtures were estimated using flow, L-box, and V-funnel tests to examine workability and compressive strength, modulus of elasticity and tensile strength as hardened properties. The use of CNS increased the overall compressive strength compared to the reference mixture, with the average increase for 28 days being 41%. The discoveries of this work offer insight into the creation of volitional mineral admixtures for improving the toughness attributes of SCC, increasing enforcement, and offering a more maintainable and practical material.
In this study, six square reinforced concrete flat plates with dimensions of (1500×1500×100) mm were tested under a concentrated load applied on a column located at the center of the slabs. One of these slabs was the control specimen, whereas, in the others, steel angles (steel collars) were used, fixed at the connection region between the slab and the column to investigate the effect of the presence of these collars on punching shear strength. Five thicknesses were used (4, 5, 6, 8, 10mm) with constant legs of angles (75×75) mm of the steel collars to investigate the effects on the punching shear resistance with respect to the control slab. The results of the experimental study show that the punching shear resistance increased b
... Show MoreMany researchers have tackled the shear behavior of Reinforced Concrete (RC) beams by using different kinds of strengthening in the shear regions and steel fibers. In the current paper, the effect of multiple parameters, such as using one percentage of Steel Fibers (SF) with and without stirrups, without stirrups and steel fibers, on the shear behavior of RC beams, has been studied and compared by using Finite Element analysis (FE). Three-dimensional (3D) models of (RC) beams are developed and analyzed using ABAQUS commercial software. The models were validated by comparing their results with the experimental test. The total number of beams that were modeled for validation purposes was four. Extensive pa
... Show MoreA Laced Reinforced Concrete (LRC) structural element comprises continuously inclined shear reinforcement in the form of lacing that connects the longitudinal reinforcements on both faces of the structural element. This study conducted a theoretical investigation of LRC deep beams to predict their behavior after exposure to fire and high temperatures. Four simply supported reinforced concrete beams of 1500 mm, 200 mm, and 240 mm length, width, and depth, respectively, were considered. The specimens were identical in terms of compressive strength ( 40 MPa) and steel reinforcement details. The same laced steel reinforcement ratio of 0.0035 was used. Three specimens were burned at variable durations and steady-state temperatures (one
... Show MoreThe magnetic properties of a pure Nickel metal and Nickel-Zinc-Manganese ferrites having the chemical formula Ni0.1(Zn0.4Mn0.6)0.9Fe2O4 were studied. The phase formation and crystal structure was studied by using x-ray diffraction which confirmed the formation of pure single spinel cubic phase with space group (Fd3m) in the ferrite. The samples microstructure was studied with scanning electron microstructure and EDX. The magnetic properties of the ferrite and nickel metal were characterized by using a laboratory setup with a magnetic field in the range from 0-500 G. The ferrite showed perfect soft spinel phase behavior while the nickel sample showed higher magnetic loss an
... Show MoreCadmium sulfide (CdS) thin films with n-type semiconductor characteristics were prepared by flash evaporating method on glass substrates. Some films were annealed at 250 oC for 1hr in air. The thicknesses of the films was estimated to be 0.5µ by the spectrometer measurement. Structural, morphological, electrical, optical and photoconductivity properties of CdS films have been investigated by X-ray diffraction, AFM, the Hall effect, optical transmittance spectra and photoconductivity analysis, respectively. X-ray diffraction (XRD) pattern shows that CdS films are in the stable hexagonal crystalline structure. Using Debye Scherrerś formula, the average grain size for the samples was found to be 26 nm. The transmittance of the
... Show MoreThe creation and characterisation of biodegradable blend films based on chitosan and polyvinyl alcohol for application in a range of packaging is described. The compatibility between the chitosan and PVA polymers was good. Composite films had a compact and homogeneous structure, according to the morphology analysis. The mechanical test result of PVA/CH at concentrations 5% showed, that The higher values of TS recorded in sample (p1, with 40 MPa) while the lower values appeared in sample (p9, with 22.09 MPa), the TS decreased gradually as the amount of PVA increased in blend film. While the blend film of pure Chitosan exhibits a poor mechanical strength which makes it a poor candidate for packaging but Blending CH with PVA together improved
... Show MoreThis contribution reports a comprehensive investigation into the structural, electronic and thermal properties of bulk and surface terbium dioxide (TbO2); a material that enjoys wide spectra of catalytic and optical applications. Our calculated lattice dimension of 5.36 Å agrees well with the corresponding experimental value at 5.22 Å. Density of states configuration of the bulk structure exhibits a semiconducting nature. Thermo-mechanical properties of bulk TbO2 were obtained based on the quasi-harmonic approximation formalism. Heat capacities, thermal expansions and bulk modulus of the bulk TbO2 were obtained under a wide range of temperatures and pressures. The dependency of these properties on operational pressure is very evident. Cle
... Show MoreTetragonal compound CuAl0.4Ti0.6Se2 semiconductor has been prepared by
melting the elementary elements of high purity in evacuated quartz tube under low
pressure 10-2 mbar and temperature 1100 oC about 24 hr. Single crystal has been
growth from this compound using slowly cooled average between (1-2) C/hr , also
thin films have been prepared using thermal evaporation technique and vacuum 10-6
mbar at room temperature .The structural properties have been studied for the powder
of compound of CuAl0.4Ti0.6Se2u using X-ray diffraction (XRD) . The structure of the
compound showed chalcopyrite structure with unite cell of right tetragonal and
dimensions of a=11.1776 Ao ,c=5.5888 Ao .The structure of thin films showed