Preferred Language
Articles
/
qYa0d4YBIXToZYALOIvd
DYNAMIC MODELING FOR DISCRETE SURVIVAL DATA BY USING ARTIFICIAL NEURAL NETWORKS AND ITERATIVELY WEIGHTED KALMAN FILTER SMOOTHING WITH COMPARISON
...Show More Authors

Survival analysis is widely applied in data describing for the life time of item until the occurrence of an event of interest such as death or another event of understudy . The purpose of this paper is to use the dynamic approach in the deep learning neural network method, where in this method a dynamic neural network that suits the nature of discrete survival data and time varying effect. This neural network is based on the Levenberg-Marquardt (L-M) algorithm in training, and the method is called Proposed Dynamic Artificial Neural Network (PDANN). Then a comparison was made with another method that depends entirely on the Bayes methodology is called Maximum A Posterior (MAP) method. This method was carried out using numerical algorithms represented by Iteratively Weighted Kalman Filter Smoothing (IWKFS) algorithm and in combination with the Expectation Maximization (EM) algorithm. Average Mean Square Error (AMSE) and Cross Entropy Error (CEE) were used as comparison’s criteria. The methods and procedures were applied to data generated by simulation using a different combination of sample sizes and the number of intervals.

Scopus
Preview PDF
Quick Preview PDF
Publication Date
Thu Oct 13 2022
Journal Name
Computation
A Pattern-Recognizer Artificial Neural Network for the Prediction of New Crescent Visibility in Iraq
...Show More Authors

Various theories have been proposed since in last century to predict the first sighting of a new crescent moon. None of them uses the concept of machine and deep learning to process, interpret and simulate patterns hidden in databases. Many of these theories use interpolation and extrapolation techniques to identify sighting regions through such data. In this study, a pattern recognizer artificial neural network was trained to distinguish between visibility regions. Essential parameters of crescent moon sighting were collected from moon sight datasets and used to build an intelligent system of pattern recognition to predict the crescent sight conditions. The proposed ANN learned the datasets with an accuracy of more than 72% in comp

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Tue Feb 01 2022
Journal Name
Baghdad Science Journal
An Enhanced Approach of Image Steganographic Using Discrete Shearlet Transform and Secret Sharing
...Show More Authors

Recently, the internet has made the users able to transmit the digital media in the easiest manner. In spite of this facility of the internet, this may lead to several threats that are concerned with confidentiality of transferred media contents such as media authentication and integrity verification. For these reasons, data hiding methods and cryptography are used to protect the contents of digital media. In this paper, an enhanced method of image steganography combined with visual cryptography has been proposed. A secret logo (binary image) of size (128x128) is encrypted by applying (2 out 2 share) visual cryptography on it to generate two secret share. During the embedding process, a cover red, green, and blue (RGB) image of size (512

... Show More
View Publication Preview PDF
Scopus (14)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Sun Apr 06 2014
Journal Name
Journal Of Economics And Administrative Sciences
Modeling Absolute Deviations Method by using Numerical Methods to measure the dispersion of the proposal for error
...Show More Authors

Is in this research review of the way minimum absolute deviations values ​​based on linear programming method to estimate the parameters of simple linear regression model and give an overview of this model. We were modeling method deviations of the absolute values ​​proposed using a scale of dispersion and composition of a simple linear regression model based on the proposed measure. Object of the work is to find the capabilities of not affected by abnormal values by using numerical method and at the lowest possible recurrence.

 

View Publication Preview PDF
Crossref
Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
A Comparison between Ericson's Formulae Results and Experimental Data Using New Formulae of Single Particle Level Density
...Show More Authors

The partial level density PLD of pre-equilibrium reactions that are described by Ericson’s formula has been studied using different formulae of single particle level density . The parameter  was used from the equidistant spacing model (ESM) model and the non- equidistant spacing model (non-ESM) and another formula of  are derived from the relation between  and level density parameter . The formulae used to derive  are the Roher formula, Egidy formula, Yukawa formula, and Thomas –Fermi formula. The partial level density results that depend on  from the Thomas-Fermi formula show a good agreement with the experimental data.

View Publication Preview PDF
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Geotechnical Engineering And Sustainable Construction
Numerical Modeling of Under Reamed Piles Behavior Under Dynamic Loading in Sandy Soil
...Show More Authors

Under-reamed piles defined by having one or more bulbs have the potential for sizeable major sides over conventional straight-sided piles, most of the studies on under-reamed piles have been conducted on the experimental side, while theoretical studies, such as the finite element method, have been mainly confined to conventional straight-sided piles. On the other hand, although several laboratory and experimental studies have been conducted to study the behavior of under-reamed piles, few numer­ical studies have been carried out to simulate the piles' performance. In addition, there is no research to compare and evaluate the behavior of these piles under dynamic loading. Therefore, this study aimed to numerically investigate bearing capaci

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Sat Jun 06 2020
Journal Name
Journal Of The College Of Education For Women
Image classification with Deep Convolutional Neural Network Using Tensorflow and Transfer of Learning
...Show More Authors

The deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Statistics And Its Interface
Search for risk haplotype segments with GWAS data by use of finite mixture models
...Show More Authors

The region-based association analysis has been proposed to capture the collective behavior of sets of variants by testing the association of each set instead of individual variants with the disease. Such an analysis typically involves a list of unphased multiple-locus genotypes with potentially sparse frequencies in cases and controls. To tackle the problem of the sparse distribution, a two-stage approach was proposed in literature: In the first stage, haplotypes are computationally inferred from genotypes, followed by a haplotype coclassification. In the second stage, the association analysis is performed on the inferred haplotype groups. If a haplotype is unevenly distributed between the case and control samples, this haplotype is labeled

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
A Comparison Between the Theoretical Cross Section Based on the Partial Level Density Formulae Calculated by the Exciton Model with the Experimental Data for (_79^197)Au nucleus
...Show More Authors

In this paper, the theoretical cross section in pre-equilibrium nuclear reaction has been studied for the reaction  at energy 22.4 MeV. Ericson’s formula of partial level density PLD and their corrections (William’s correction and spin correction) have been substituted  in the theoretical cross section and compared with the experimental data for  nucleus. It has been found that the theoretical cross section with one-component PLD from Ericson’s formula when  doesn’t agree with the experimental value and when . There is little agreement only at the high value of energy range with  the experimental cross section. The theoretical cross section that depends on the one-component William's formula and on-component corrected to spi

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Indian Journal Of Ecology
Classification of al-hammar marshes satellite images in Iraq using artificial neural network based on coding representation
...Show More Authors

Scopus (2)
Scopus
Publication Date
Fri Aug 05 2016
Journal Name
Wireless Communications And Mobile Computing
A comparison study on node clustering techniques used in target tracking WSNs for efficient data aggregation
...Show More Authors

Wireless sensor applications are susceptible to energy constraints. Most of the energy is consumed in communication between wireless nodes. Clustering and data aggregation are the two widely used strategies for reducing energy usage and increasing the lifetime of wireless sensor networks. In target tracking applications, large amount of redundant data is produced regularly. Hence, deployment of effective data aggregation schemes is vital to eliminate data redundancy. This work aims to conduct a comparative study of various research approaches that employ clustering techniques for efficiently aggregating data in target tracking applications as selection of an appropriate clustering algorithm may reflect positive results in the data aggregati

... Show More
View Publication
Scopus (31)
Crossref (24)
Scopus Clarivate Crossref