Survival analysis is widely applied in data describing for the life time of item until the occurrence of an event of interest such as death or another event of understudy . The purpose of this paper is to use the dynamic approach in the deep learning neural network method, where in this method a dynamic neural network that suits the nature of discrete survival data and time varying effect. This neural network is based on the Levenberg-Marquardt (L-M) algorithm in training, and the method is called Proposed Dynamic Artificial Neural Network (PDANN). Then a comparison was made with another method that depends entirely on the Bayes methodology is called Maximum A Posterior (MAP) method. This method was carried out using numerical algorithms represented by Iteratively Weighted Kalman Filter Smoothing (IWKFS) algorithm and in combination with the Expectation Maximization (EM) algorithm. Average Mean Square Error (AMSE) and Cross Entropy Error (CEE) were used as comparison’s criteria. The methods and procedures were applied to data generated by simulation using a different combination of sample sizes and the number of intervals.
This work bases on encouraging a generous and conceivable estimation for modified an algorithm for vehicle travel times on a highway from the eliminated traffic information using set aside camera image groupings. The strategy for the assessment of vehicle travel times relies upon the distinctive verification of traffic state. The particular vehicle velocities are gotten from acknowledged vehicle positions in two persistent images by working out the distance covered all through elapsed past time doing mollification between the removed traffic flow data and cultivating a plan to unequivocally predict vehicle travel times. Erbil road data base is used to recognize road locales around road segments which are projected into the commended camera
... Show MoreBuilding Information Modeling (BIM) is extensively used in the construction industry due to its benefits throughout the Project Life Cycle (PLC). BIM can simulate buildings throughout PLC, detect and resolve problems, and improve building visualization that contributes to the representation of actual project details in the construction stage. BIM contributes to project management promotion by detecting problems that lead to conflicts, cost overruns, and time delays. This work aims to implement an effective BIM for the Iraqi construction projects’ life cycle. The methodology used is a literature review to collect the most important factors contributing to the success of BIM implementation, interview the team of the Cent
... Show MoreThis paper presents a comparative study of two learning algorithms for the nonlinear PID neural trajectory tracking controller for mobile robot in order to follow a pre-defined path. As simple and fast tuning technique, genetic and particle swarm optimization algorithms are used to tune the nonlinear PID neural controller's parameters to find the best velocities control actions of the right wheel and left wheel for the real mobile robot. Polywog wavelet activation function is used in the structure of the nonlinear PID neural controller. Simulation results (Matlab) and experimental work (LabVIEW) show that the proposed nonlinear PID controller with PSO
learning algorithm is more effective and robust than genetic learning algorithm; thi