Preferred Language
Articles
/
qWHWdZkBdMdGkNqjyCeP
Non-linear support vector machine classification models using kernel tricks with applications
...Show More Authors

The support vector machine, also known as SVM, is a type of supervised learning model that can be used for classification or regression depending on the datasets. SVM is used to classify data points by determining the best hyperplane between two or more groups. Working with enormous datasets, on the other hand, might result in a variety of issues, including inefficient accuracy and time-consuming. SVM was updated in this research by applying some non-linear kernel transformations, which are: linear, polynomial, radial basis, and multi-layer kernels. The non-linear SVM classification model was illustrated and summarized in an algorithm using kernel tricks. The proposed method was examined using three simulation datasets with different sample sizes (50, 100, 200). A comparison between non-linear SVM and two standard classification methods was illustrated using various compared features. Our study has shown that the non-linear SVM method gives better results by checking: sensitivity, specificity, accuracy, and time-consuming. © 2024 Author(s).

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jan 13 2019
Journal Name
Iraqi Journal Of Physics
Adaptive digital technique for discriminating between shadow and water bodies in the high resolution satellite imagery
...Show More Authors

This research presents a new algorithm for classification the
shadow and water bodies for high-resolution satellite images (4-
meter) of Baghdad city, have been modulated the equations of the
color space components C1-C2-C3. Have been using the color space
component C3 (blue) for discriminating the shadow, and has been
used C1 (red) to detect the water bodies (river). The new technique
was successfully tested on many images of the Google earth and
Ikonos. Experimental results show that this algorithm effective to
detect all the types of the shadows with color, and also detects the
water bodies in another color. The benefit of this new technique to
discriminate between the shadows and water in fast Matlab pro

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Aug 01 2015
Journal Name
Modern Applied Science
A New Method for Detecting Cerebral Tissues Abnormality in Magnetic Resonance Images
...Show More Authors

We propose a new method for detecting the abnormality in cerebral tissues present within Magnetic Resonance Images (MRI). Present classifier is comprised of cerebral tissue extraction, image division into angular and distance span vectors, acquirement of four features for each portion and classification to ascertain the abnormality location. The threshold value and region of interest are discerned using operator input and Otsu algorithm. Novel brain slices image division is introduced via angular and distance span vectors of sizes 24˚ with 15 pixels. Rotation invariance of the angular span vector is determined. An automatic image categorization into normal and abnormal brain tissues is performed using Support Vector Machine (SVM). St

... Show More
Publication Date
Thu Jul 01 2021
Journal Name
Civil Engineering Journal
Factors Affecting Traffic Accidents Density on Selected Multilane Rural Highways
...Show More Authors

Estimations of average crash density as a function of traffic elements and characteristics can be used for making good decisions relating to planning, designing, operating, and maintaining roadway networks. This study describes the relationships between total, collision, turnover, and runover accident densities with factors such as hourly traffic flow and average spot speed on multilane rural highways in Iraq. The study is based on data collected from two sources: police stations and traffic surveys. Three highways are selected in Wassit governorate as a case study to cover the studied locations of the accidents. Three highways are selected in Wassit governorate as a case study to cover the studied locations of the accidents. The se

... Show More
View Publication Preview PDF
Crossref (11)
Crossref
Publication Date
Thu Jul 01 2021
Journal Name
Civil Engineering Journal
Factors Affecting Traffic Accidents Density on Selected Multilane Rural Highways
...Show More Authors

Estimations of average crash density as a function of traffic elements and characteristics can be used for making good decisions relating to planning, designing, operating, and maintaining roadway networks. This study describes the relationships between total, collision, turnover, and runover accident densities with factors such as hourly traffic flow and average spot speed on multilane rural highways in Iraq. The study is based on data collected from two sources: police stations and traffic surveys. Three highways are selected in Wassit governorate as a case study to cover the studied locations of the accidents. Three highways are selected in Wassit governorate as a case study to cover the studied locations of the accidents. The selection

... Show More
Preview PDF
Crossref (11)
Crossref
Publication Date
Thu Feb 15 2024
Journal Name
Journal Of Al-turath University College
A Comparison of Traditional and Optimized Multiple Grey Regression Models with Water Data Application
...Show More Authors

Grey system theory is a multidisciplinary scientific approach, which deals with systems that have partially unknown information (small sample and uncertain information). Grey modeling as an important component of such theory gives successful results with limited amount of data. Grey Models are divided into two types; univariate and multivariate grey models. The univariate grey model with one order derivative equation GM (1,1) is the base stone of the theory, it is considered the time series prediction model but it doesn’t take the relative factors in account. The traditional multivariate grey models GM(1,M) takes those factor in account but it has a complex structure and some defects in " modeling mechanism", "parameter estimation "and "m

... Show More
View Publication
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
An exploratory study of history-based test case prioritization techniques on different datasets
...Show More Authors

In regression testing, Test case prioritization (TCP) is a technique to arrange all the available test cases. TCP techniques can improve fault detection performance which is measured by the average percentage of fault detection (APFD). History-based TCP is one of the TCP techniques that consider the history of past data to prioritize test cases. The issue of equal priority allocation to test cases is a common problem for most TCP techniques. However, this problem has not been explored in history-based TCP techniques. To solve this problem in regression testing, most of the researchers resort to random sorting of test cases. This study aims to investigate equal priority in history-based TCP techniques. The first objective is to implement

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Thu Jun 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Bayes Analysis for the Scale Parameter of Gompertz Distribution
...Show More Authors

In this paper, we investigate the behavior of the bayes estimators, for the scale parameter of the Gompertz distribution under two different loss functions such as, the squared error loss function, the exponential loss function (proposed), based different double prior distributions represented as erlang with inverse levy prior, erlang with non-informative prior, inverse levy with non-informative prior and erlang with chi-square prior.

The simulation method was fulfilled to obtain the results, including the estimated values and the mean square error (MSE) for the scale parameter of the Gompertz distribution, for different cases for the scale parameter of the Gompertz distr

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Nov 25 2025
Journal Name
Journal Of Engineering
Technological Analysis of Flat Surface Conditions by Magnetic Abrasive Finishing Method (MAF)
...Show More Authors

This study introduced the effect of using magnetic abrasive finishing method (MAF) for finishing flat surfaces. The results of experiment allow considering the MAF method as a perspective for finishing flat surfaces, forming optimum physical mechanical properties of surfaces layer, removing the defective layers and decreasing the height of micro irregularities. Study the characteristics which permit judgment parameters of surface quality after MAF method then comparative with grinding

View Publication
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Economics And Administrative Sciences
Fuzzy Bridge Regression Model Estimating via Simulation
...Show More Authors

      The main problem when dealing with fuzzy data variables is that it cannot be formed by a model that represents the data through the method of Fuzzy Least Squares Estimator (FLSE) which gives false estimates of the invalidity of the method in the case of the existence of the problem of multicollinearity. To overcome this problem, the Fuzzy Bridge Regression Estimator (FBRE) Method was relied upon to estimate a fuzzy linear regression model by triangular fuzzy numbers. Moreover, the detection of the problem of multicollinearity in the fuzzy data can be done by using Variance Inflation Factor when the inputs variable of the model crisp, output variable, and parameters are fuzzed. The results were compared usin

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
International Journal Of Agricultural And Statistical Sciences
NONPARAMETRIC ESTIMATION IN DOUBLY GEOMETRIC STOCHASTIC PROCESSES
...Show More Authors

A stochastic process {Xk, k = 1, 2, ...} is a doubly geometric stochastic process if there exists the ratio (a > 0) and the positive function (h(k) > 0), so that {α 1 h-k }; k ak X k = 1, 2, ... is a generalization of a geometric stochastic process. This process is stochastically monotone and can be used to model a point process with multiple trends. In this paper, we use nonparametric methods to investigate statistical inference for doubly geometric stochastic processes. A graphical technique for determining whether a process is in agreement with a doubly geometric stochastic process is proposed. Further, we can estimate the parameters a, b, μ and σ2 of the doubly geometric stochastic process by using the least squares estimate for Xk a

... Show More
Scopus (1)
Scopus