Preferred Language
Articles
/
qWHWdZkBdMdGkNqjyCeP
Non-linear support vector machine classification models using kernel tricks with applications
...Show More Authors

The support vector machine, also known as SVM, is a type of supervised learning model that can be used for classification or regression depending on the datasets. SVM is used to classify data points by determining the best hyperplane between two or more groups. Working with enormous datasets, on the other hand, might result in a variety of issues, including inefficient accuracy and time-consuming. SVM was updated in this research by applying some non-linear kernel transformations, which are: linear, polynomial, radial basis, and multi-layer kernels. The non-linear SVM classification model was illustrated and summarized in an algorithm using kernel tricks. The proposed method was examined using three simulation datasets with different sample sizes (50, 100, 200). A comparison between non-linear SVM and two standard classification methods was illustrated using various compared features. Our study has shown that the non-linear SVM method gives better results by checking: sensitivity, specificity, accuracy, and time-consuming. © 2024 Author(s).

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Dec 01 2024
Journal Name
Baghdad Science Journal
Bernoulli Polynomials Method for Solving Integral Equations with Singular Kernel
...Show More Authors

هناك دائما حاجة إلى طريقة فعالة لتوليد حل عددي أكثر دقة للمعادلات التكاملية ذات النواة المفردة أو المفردة الضعيفة لأن الطرق العددية لها محدودة. في هذه الدراسة ، تم حل المعادلات التكاملية ذات النواة المفردة أو المفردة الضعيفة باستخدام طريقة متعددة حدود برنولي. الهدف الرئيسي من هذه الدراسة هو ايجاد حل تقريبي لمثل هذه المشاكل في شكل متعددة الحدود في سلسلة من الخطوات المباشرة. أيضا ، تم افتراض أن مقام النواة

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Sat Jul 03 2021
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Comparison between VG-levy and Kernel function estimation with application
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sat Dec 01 2012
Journal Name
Journal Of Economics And Administrative Sciences
ESTIMATION OF COEFFICIENTS AND SCALE PARAMETER FOR LINEAR (TYPE 1) EXTREME VALUE REGRESSION MODEL FOR LARGEST VALUES WITH APPLICATIONS
...Show More Authors

In this paper we estimate the coefficients and scale parameter in linear regression model depending on the residuals are of type 1 of extreme  value distribution for the largest values . This can be regard as an improvement for the studies with the smallest values . We study two estimation methods ( OLS  & MLE ) where we resort to Newton – Raphson (NR) and Fisher Scoring methods to get MLE estimate because the difficulty of using the usual approach with MLE . The relative efficiency criterion is considered beside to the statistical inference procedures for the extreme value regression model of type 1 for largest values . Confidence interval , hypothesis testing for both scale parameter and regression coefficients

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 01 2006
Journal Name
Journal Of Engineering
SELF ORGANIZING FUZZY CONTROLLER FOR A NON-LINEAR TIME VARYING SYSTEM
...Show More Authors

This paper proposes a self organizing fuzzy controller as an enhancement level of the fuzzy controller. The adjustment mechanism provides explicit adaptation to tune and update the position of the output membership functions of the fuzzy controller. Simulation results show that this controller is capable of controlling a non-linear time varying system so that the performance of the system improves so as to reach the desired state in a less number of samples.

Publication Date
Fri Feb 18 2022
Journal Name
Coatings
Non-Polar Gallium Nitride for Photodetection Applications: A Systematic Review
...Show More Authors

Ultraviolet photodetectors have been widely utilized in several applications, such as advanced communication, ozone sensing, air purification, flame detection, etc. Gallium nitride and its compound semiconductors have been promising candidates in photodetection applications. Unlike polar gallium nitride-based optoelectronics, non-polar gallium nitride-based optoelectronics have gained huge attention due to the piezoelectric and spontaneous polarization effect–induced quantum confined-stark effect being eliminated. In turn, non-polar gallium nitride-based photodetectors portray higher efficiency and faster response compared to the polar growth direction. To date, however, a systematic literature review of non-polar gallium nitride-

... Show More
View Publication Preview PDF
Scopus (24)
Crossref (26)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Periodicals Of Engineering And Natural Sciences
Estimation of return stock rate by using wavelet and kernel smoothers
...Show More Authors

This article aim to estimate the Return Stock Rate of the private banking sector, with two banks, by adopting a Partial Linear Model based on the Arbitrage Pricing Model (APT) theory, using Wavelet and Kernel Smoothers. The results have proved that the wavelet method is the best. Also, the results of the market portfolio impact and inflation rate have proved an adversely effectiveness on the rate of return, and direct impact of the money supply.

Scopus (3)
Scopus
Publication Date
Sat Feb 01 2025
Journal Name
Algorithms
Three-Dimensional Object Recognition Using Orthogonal Polynomials: An Embedded Kernel Approach
...Show More Authors

Computer vision seeks to mimic the human visual system and plays an essential role in artificial intelligence. It is based on different signal reprocessing techniques; therefore, developing efficient techniques becomes essential to achieving fast and reliable processing. Various signal preprocessing operations have been used for computer vision, including smoothing techniques, signal analyzing, resizing, sharpening, and enhancement, to reduce reluctant falsifications, segmentation, and image feature improvement. For example, to reduce the noise in a disturbed signal, smoothing kernels can be effectively used. This is achievedby convolving the distributed signal with smoothing kernels. In addition, orthogonal moments (OMs) are a cruc

... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Thu Dec 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
solving linear fractional programming problems (LFP) by Using denominator function restriction method and compare it with linear transformations method
...Show More Authors

 

Abstract

The use of modern scientific methods and techniques, is considered important topics to solve many of the problems which face some sector, including industrial, service and health. The researcher always intends to use modern methods characterized by accuracy, clarity and speed to reach the optimal solution and be easy at the same time in terms of understanding and application.

the research presented this comparison between the two methods of solution for linear fractional programming models which are linear transformation for Charnas & Cooper , and denominator function restriction method through applied on the oil heaters and gas cookers plant , where the show after reac

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Artificial Intelligence For Covid-19
An Efficient Mixture of Deep and Machine Learning Models for COVID-19 and Tuberculosis Detection Using X-Ray Images in Resource Limited Settings
...Show More Authors

View Publication
Scopus (34)
Crossref (27)
Scopus Crossref
Publication Date
Sat Apr 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Use aggregate slide estimate additive splines estimation for the diagnosis of non-linear composite model self-regression with practical application
...Show More Authors

Nonlinear time series analysis is one of the most complex problems ; especially the nonlinear autoregressive with exogenous variable (NARX) .Then ; the problem of model identification and the correct orders determination considered the most important problem in the analysis of time series . In this paper , we proposed splines  estimation method for model identification , then we used three criterions for the correct orders determination. Where ; proposed method used to estimate the additive splines for model identification , And the rank determination depends on the additive property  to avoid the problem of curse dimensionally . The proposed method is one of the nonparametric methods , and the simulation results give a

... Show More
View Publication Preview PDF
Crossref