The support vector machine, also known as SVM, is a type of supervised learning model that can be used for classification or regression depending on the datasets. SVM is used to classify data points by determining the best hyperplane between two or more groups. Working with enormous datasets, on the other hand, might result in a variety of issues, including inefficient accuracy and time-consuming. SVM was updated in this research by applying some non-linear kernel transformations, which are: linear, polynomial, radial basis, and multi-layer kernels. The non-linear SVM classification model was illustrated and summarized in an algorithm using kernel tricks. The proposed method was examined using three simulation datasets with different sample sizes (50, 100, 200). A comparison between non-linear SVM and two standard classification methods was illustrated using various compared features. Our study has shown that the non-linear SVM method gives better results by checking: sensitivity, specificity, accuracy, and time-consuming. © 2024 Author(s).
Average per capita GDP income is an important economic indicator. Economists use this term to determine the amount of progress or decline in the country's economy. It is also used to determine the order of countries and compare them with each other. Average per capita GDP income was first studied using the Time Series (Box Jenkins method), and the second is linear and non-linear regression; these methods are the most important and most commonly used statistical methods for forecasting because they are flexible and accurate in practice. The comparison is made to determine the best method between the two methods mentioned above using specific statistical criteria. The research found that the best approach is to build a model for predi
... Show MoreTi6Al4V alloy is widely used in aerospace and medical applications. It is classified as a difficult to machine material due to its low thermal conductivity and high chemical reactivity. In this study, hybrid intelligent models have been developed to predict surface roughness when end milling Ti6Al4V alloy with a Physical Vapor Deposition PVD coated tool under dry cutting conditions. Back propagation neural network (BPNN) has been hybridized with two heuristic optimization techniques, namely: gravitational search algorithm (GSA) and genetic algorithm (GA). Taguchi method was used with an L27 orthogonal array to generate 27 experiment runs. Design expert software was used to do analysis of variances (ANOVA). The experimental data were
... Show MoreBackground: Optimal root canal retreatment was required safe and efficient removal of filling material from root canal. The aim of this in vitro study was to compare the efficacy of reciprocating and continuous motion of four retreatment systems in removal of root canal filling material. Materials and Methods: Forty distal roots of the mandibular first molars teeth were used in this study, these roots were embedded in cold clear acrylic,roots were instrumented using crown down technique and rotary ProTaper systemize Sx to size F2 ,instrumentation were done with copiousirrigation of 2.5% sodium hypochlorite and 17% buffered solution of EDTA was used as final irrigant followed by distilledwater, roots were obturated with AH26 sealer and Prota
... Show MoreAvascular necrosis have always presented great challenges to orthopedic surgeons and patients, remain in many ways today the unsolved dilemma. Varieties of non-vascularized bone grafting techniques preceded by core decompression have been proposed with varying degrees of success. O bb j ee cc t i vv ee ss : The aim of this study is to review the the value of core decompression and non-vascularized tibial bone strip graft treatment for early stages of non-traumatic osteonecrosis stage II & III according to stein burg staging . M ee t hh oo dd ss : prospectively reviewed 26 patients (32 hips) with osteonecrosis of the femoral head between June 2006 and December 2013 at Imam Ali hospital in Sader city & Al-Wasity teaching hosp
... Show MoreBackground: Optimal root canal retreatment was required safe and efficient removal of filling material from root canal. The aim of this in vitro study was to compare the efficacy of reciprocating and continuous motion of four retreatment systems in removal of root canal filling material. Materials and Methods: Forty distal roots of the mandibular first molars teeth were used in this study, these roots were embedded in cold clear acrylic,roots were instrumented using crown down technique and rotary ProTaper systemize Sx to size F2 ,instrumentation were done with copiousirrigation of 2.5% sodium hypochlorite and 17% buffered solution of EDTA was used as final irrigant followed by distilledwater, roots were obturated with AH26 sealer and Prota
... Show MoreObjective: The study aims at evaluating the psychological support and discharge plan from the hospital provided by nurses for woman undergone hysterectomy.
Methodology: The study uses descriptive design and non-probability (convenient) sample which is consisted of (40) nurses from (8) teaching hospitals in the City of Baghdad within the maternity wards. The study is carried out from 11 November 2020 to 27 June 2021. A observational tool is developed to evaluate the psychological support and the discharge plan after surgery. Content validity and internal consistency reliability are determined through pilot study. Data are collected through the use of the questionnaire and data are analyzed through the use of descriptive and inferentia
The free piston engine linear generator (FPELG) is a simple engine structure with few components, making it a promising power generation system. However, because the engine works without a crankshaft, the handling of the piston motion control (PMC) is the main challenge influencing the stability and performance of FPELGs. In this article, the optimal operating parameters of FPELG for maximising engine performance and reducing exhaust gas emissions were studied. Moreover, the influence of adding hydrogen (H2) to compressed natural gas (CNG) fuel on FPELG performance was investigated. The influence of operating parameters on in-cylinder pressure was also analysed. The single-piston FPELG fuelled by CNG blended with H2 was used to run the expe
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show More