Hazardous materials, heavy metals, and organic toxins released into the environment have caused considerable harm to microbes, plants, animals, and humans. Wastewater is one of the most contaminated ecosystems due to heavy metals emitted mostly by human activity. Bioremediation of wastewater is an ecologically acceptable and cost-effective method of removing heavy metals from sewage; the general purpose of this study is to analyse the dependability of anaerobic sludge biomass in removing sulfur compounds and heavy metals from waste water. The anaerobic sludge biomass evaluated in this work was taken from a wastewater treatment plant (WWTP) in Al-Rustumiya, Baghdad, and grown in the mineral medium for anaerobic growth. In serum bottles, batch metal removal tests were conducted concurrently with sulphate reduction. The biomass increased from the time of inoculation medium with 20 mg·L-1 (t = 0 day, MLVSS = 688 29 mg·L-1) to the 8th day, when it reached the highest value (MLVSS = 980 48 mg·L-1); more than 90% removal was observed for copper and nickel, almost 80% for lead and cadmium metals, and less than 80% removal for chrome and zinc. In addition, in the case of lead, copper, and nickel, sulphate removal was greater than 50%. Except zinc, all metals have the capacity to remove more than 60% of the COD.
A microbial desalination cell (MDC) is a new approach to bioelectrochemical systems. It provides a more sustainable way to electrical power production, saltwater desalination, and wastewater treatment at the same time. This study examined three operation modes of the MDC: chemical cathode, air cathode, and biocathode MDC, to give clear sight of this system's performance. The experimental work results for these three modes were recorded as power densities generation, saltwater desalination rates, and COD removal percentages. For the chemical cathode MDC, the power density was 96.8 mW/m2, the desalination rate was 84.08 ppm/hr, and the COD removal percentage was 95.94%. The air cathode MDC results were different
... Show MoreAcontaminated ophthalmic solutions represent a potential cause of avoidable ocular infection. This study aimed to determine the magnitude and pattern of microbial contamination of eye drops in out patient at the department of ophthalmology, at Baghdad national hospital, Iraq. Fifty four vials from the out patient clinic were obtained for microbial examination after an average use of 2 weeks. The dropper tip and the residual eye drop were examined for contamination. The specimens were cultured, the number of colonies counted, the organisms identified. Eight (15%) out of 54 analyzed vials were contaminated , most bacteria identi
... Show MorePrevious studies on the synthesis and characterization of metal chelates with uracil by elemental analysis, conductivity, IR, UV-Vis, NMR spectroscopy, and thermal analysis were covered in this review article. Reviewing these studies, we found that uracil can be coordinated through the electron pair on the N1, N3, O2, or O4 atoms. If the uracil was a mono-dentate ligand, it will be coordinated by one of the following atoms: N1, N3 or O2. But if the uracil was bi-dentate ligand, it will be coordinated by atoms N1 and O2, N3 and O2 or N3 and O4. However, when uracil forms complexes in the form of polymers, coordination occurs through the following atoms: N1 and N3 or N1 and O4.
Abstract Organic compounds with pyrazole cores have a variety of uses, notably in the pharmaceutical and agrochemical sectors. The interest in creating pyrazole compounds, examining their many features, and looking for potential uses is growing. Our work has concert with synthesis of chalcones and pyrazolines, then finally pyrazoline-aniline derivatives and evaluation their anti-inflammatory, antibacterial and antifungal activities
The removal of direct blue 71 dye from a prepared wastewater was studied employing batch electrocoagulation (EC) cell. The electrodes of aluminum were used. The influence of process variables which include initial pH (2.0-12.0), wastewater conductivity (0.8 -12.57) mS/cm , initial dye concentration (30 -210) mg/L, electrolysis time (3-12) min, current density (10-50) mA/cm2 were studied in order to maximize the color removal from wastewater. Experimental results showed that the color removal yield increases with increasing pH until pH 6.0 after that it decreased with increasing pH. The color removal increased with increasing current density, wastewater conductivity, electrolysis time, and decreased with increasing the concen
... Show MoreBiosorption of lead, chromium, and cadmium ions from aqueous solution by dead anaerobic biomass (DAB) was studied in single, binary, and ternary systems with initial concentration of 50 mg/l. The metal-DAB affinity was the same for all systems. The main biosorption mechanisms were complexation and physical adsorption of metallic cations onto natural active functional groups on the cell wall matrix of the DAB. It was found that biosorption of the metallic cations onto DAB cell wall component was a surface process. The main functional groups involved in the metallic cation biosorption were apparently carboxyl, amino, hydroxyle, sulfhydryl, and sulfonate. These groups were part of the DAB cell wall structural polymers. Hydroxyle groups (–O
... Show More