This article aims to determine the time-dependent heat coefficient together with the temperature solution for a type of semi-linear time-fractional inverse source problem by applying a method based on the finite difference scheme and Tikhonov regularization. An unconditionally stable implicit finite difference scheme is used as a direct (forward) solver. While by the MATLAB routine lsqnonlin from the optimization toolbox, the inverse problem is reformulated as nonlinear least square minimization and solved efficiently. Since the problem is generally incorrect or ill-posed that means any error inclusion in the input data will produce a large error in the output data. Therefore, the Tikhonov regularization technique is applied to obtain stable and accurate results. Finally, to demonstrate the accuracy and effectiveness of our scheme, two benchmark test problems have been considered, and its good working with different noise levels.
The nonlinear refractive (NLR) index and third order susceptibility (X3) of carbon quantum dots (CQDs) have been studied using two laser wavelengths (473 and 532 nm). The z-scan technique was used to examine the nonlinearity. Results showed that all concentrations have negative NLR indices in the order of 10−10 cm2/W at two laser wavelengths. Moreover, the nonlinearity of CQDs was improved by increasing the concentration of CQDs. The highest value of third order susceptibility was found to be 3.32*10−8 (esu) for CQDs with a concentration of 70 mA at 473 nm wavelength.
We consider the outflow of water from the peak of a triangular ridge into a channel of finite depth. Solutions are computed for different flow rates and bottom angles. A numerical method is used to compute the flow from the source for small values of flow rate and it is found that there is a maximum flow rate beyond which steady solutions do not seem to exist. Limiting flows are computed for each geometrical configuration. One application of this work is as a model of saline water being returned to the ocean after desalination. References Craya, A. ''Theoretical research on the flow of nonhomogeneous fluids''. La Houille Blanche, (1):22–55, 1949. doi:10.1051/lhb/1949017 Dun, C. R. and Hocking, G. C. ''Withdrawal of fluid through
... Show MoreIn this work, the switching dynamics of a Fabry-Perot etalon were analyzed in term of effective time constant, which changes dramatically near the switching points. The switch-ON and switch-OFF have been analyzed numerically using a modified Debye dynamic equation. The method used to determine the solution of the Debye relaxation equations solved numerically to predict the behavior of the etalon for modulated input power.
Tungsten inert gas arc welding–based shaped metal deposition is a novel additive manufacturing technology which can be used for fabricating solid dense parts by melting a cold wire on a substrate in a layer-by-layer manner via continuous DC arc heat. The shaped metal deposition method would be an alternative way to traditional manufacturing methods, especially for complex featured and large-scale solid parts manufacturing, and it is particularly used for aerospace structural components, manufacturing, and repairing of die/molds and middle-sized dense parts. This article presents the designing, constructing, and controlling of an additive manufacturing system using tungsten inert gas plus wire–based shaped metal deposition metho
... Show MoreThe problem of non-Darcian-Bènard double diffusive magneto-Marangoni convection is considered in a horizontal infinite two layer system. The system consists of a two-component fluid layer placed above a porous layer, saturated with the same fluid with a constant heat sources/sink in both the layers, in the presence of a vertical magnetic field. The lower porous layer is bounded by rigid boundary, while the upper boundary of the fluid region is free with the presence of Marangoni effects. The system of ordinary differential equations obtained after normal mode analysis is solved in a closed form for the eigenvalue and the Thermal Marangoni Number (TMN) for two cases of Thermal Boundary Combinations (TBC); th
... Show MoreIn this article, the lattice Boltzmann method with two relaxation time (TRT) for the D2Q9 model is used to investigate numerical results for 2D flow. The problem is performed to show the dissipation of the kinetic energy rate and its relationship with the enstrophy growth for 2D dipole wall collision. The investigation is carried out for normal collision and oblique incidents at an angle of . We prove the accuracy of moment -based boundary conditions with slip and Navier-Maxwell slip conditions to simulate this flow. These conditions are under the effect of Burnett-order stress conditions that are consistent with the discrete Boltzmann equation. Stable results are found by using this kind of boundary condition where d
... Show More