The study's objective is to produce Nano Graphene Oxide (GO) before using it for batch adsorption to remove heavy metals (Cadmium Cd+2, Nickel Ni+2, and Vanadium V+5) ions from industrial wastewater. The temperature effect (20-50) °C and initial concentration effect (100-800) mg L-1 on the adsorption process were studied. A simulation aqueous solution of the ions was used to identify the adsorption isotherms, and after the experimental data was collected, the sorption process was studied kinetically and thermodynamically. The Langmuir, Freundlich, and Temkin isotherm models were used to fit the data. The results showed that Cd, Ni, and V ions on the GO adsorbing surface matched the Langmuir model with correlation coefficients (R2) of 0.999. Kinetic models studied showed that a pseudo-second-order model was followed and thermodynamically, the process was exothermic due to ∆H negative, the reduction in randomness because of negative ∆S. additionally, spontaneous adsorption of metal ions was ∆G negative values influenced.
Fiber‐reinforced elastic laminated composites are extensively used in several domains owing to their high specific stiffness and strength and low specific density. Several studies were performed to ascertain the factors that affect the composite plates’ dynamic properties. This study aims to derive a mathematical model for the dynamic response of the processed composite material in the form of an annular circular shape made of polyester/E‐glass composite. The mathematical model was developed based on modified classical annular circular plate theory under dynamic loading, and all its formulas were solved using MATLAB 2023. The mathematical model was also verified with real experimental work involving the vibration test of the f
... Show MoreA new ligand [N-(4-methoxy benzoyl amino)-thioxo methyl ] leucine (MBL) was prepared from the reaction of (4-methoxy benzoyl isothiocyanate with leucine acid in molar ratio (l:l), it was characterized by elemental analysis (C.H.N.S), FT-IR, UV-Vis, 1H and 13C-NMR. The complexes of the bivalent ions (Mn, Fe, Co, Ni, Cu, Zn, Cd and Hg ) have been prepared and characterized too. The structural was established by elemental analysis (C.H.N.S), FT-IR, UV-Vis spectra, conductivity measurements atomic absorption and magnetic susceptibility and determination of molar ration (M:L). The complexes showed characteristic behavior of tetrahedral geometry around the metal ions except with (Cu) complex showed square planer.
حضر الليكاند (L) 1-فنيل-3-بردين-2-يل مثيل-ثايويوريا من تفاعل 2-أمينو مثيل بردين مع فنيل ايزوثايوسيانيت وبنسبة 1: 1 وشخص الليكاند بواسطة التحليل الدقيق للعناصر (C, H, N), الأشعة تحت الحمراء، الأشعة فوق البنفسجية–المرئية وطيف الرنين النووي المغناطيسي كما حضرت وشخصت معقدات أملاح بعض ايونات العناصر الثنائية التكافؤ (Co, Ni, Cu, Cd and Hg). استخدمت تقنية الأشعة تحت الحمراء، الأشعه فوق البنفسجية-المرئية, التوصيلية الكهربائية و الا
... Show MoreA new ligand [N-(4-methoxy benzoyl amino)-thioxo methyl ] leucine (MBL) was prepared from the reaction of (4-methoxy benzoyl isothiocyanate with leucine acid in molar ratio (l:l), it was characterized by elemental analysis (C.H.N.S), FT-IR, UV-Vis, 1H and 13CNMR. The complexes of the bivalent ions (Mn, Fe, Co, Ni, Cu, Zn, Cd and Hg ) have been prepared and characterized too. The structural was established by elemental analysis (C.H.N.S), FT-IR, UV-Vis spectra, conductivity measurements atomic absorption and magnetic susceptibility and determination of molar ration (M:L). The complexes showed characteristic behavior of tetrahedral geometry around the metal ions except with (Cu) complex
... Show MoreIn this work, a Photonic Crystal Fiber (PCF) sensor based on the Surface Plasmon Resonance (SPR) technology was proposed. A thin layer of gold (Au) was deposited on a D-shaped Photonic Crystal Fiber (PCF), which was coated with plasmonic chemically stable gold material with a thickness of 40nm. The performance parameters like sensitivity including wavelength sensitivity and amplitude sensitivity and resolution were evaluated by simulation using COMSOL software. The proposed sensor was created by using the finite element approach, it is numerically examined. The results show that the surface of D-shaped Photonic Crystal Fiber coated with Au behaves as a sensor to detect the refractive index (IR) of toxic metal ions. The impacts of the str
... Show MoreThe current study aimed to evaluate the effect of the heavy metals copper, cadmium and cobalt when added individually, in combination and in combination on the growth and reproduction of the aquatic fungus Saprolegnia hypogyna.
Mixed metal ligand complexes is reported with Curcumin (CUM) as a primary ligand and 1:10-phenanthroline (phen ) as secondary ligand. The structures of these complexes are confirmed by using FT-IR and UV- electronic spectroscopies, magnetic moments, melting points , molar conductivity measurements .and the metal % analysis revealed that the complexes analyze indicates a six coordinated as[M(CUM)( Phen)2]Cl, M=Mn (II), Co(II), Ni(II),Cu(II) ,Zn(II) , Cd(II) , Hg(II) and [M’ (CUM)( Phen)2]Cl2 M’= Cr(III) &. Fe(III). In-vitro antimicrobial studies on ( Curcumin and 1:10-phenanthroline ligands and mixed metal ligand complexes against {(Bacillus subtilis (G+) , Esherichia Coli (G-) and as well as antifungal activities against Candida albican
... Show MoreCombining different treatment strategies successively or simultaneously has become recommended to achieve high purification standards for the treated discharged water. The current work focused on combining electrocoagulation, ion-exchange, and ultrasonication treatment approaches for the simultaneous removal of copper, nickel, and zinc ions from water. The removal of the three studied ions was significantly enhanced by increasing the power density (4–10 mA/cm2) and NaCl salt concentration (0.5–1.5 g/L) at a natural solution pH. The simultaneous removal of these metal ions at 4 mA/cm2 and 1 g NaCl/L was highly improved by introducing 1 g/L of mordenite zeolite as an ion-exchanger. A remarkable removal of heavy metals was reported
... Show More