Preferred Language
Articles
/
qBhfxJYBVTCNdQwCAIba
THE EFFICIENCY OF GUM-SILICA CMPOSITE FOR REMOVING OF WASTEWATER TURBIDITY
...Show More Authors

A novel mixed natural coagulant has been developed to remove sewage pollutants and heavy metals from Qanat- al- Jayesh by using low cost adsorbent natural materials. In these materials, significant interaction contains Arabic gum mixed with extracted silica from rice husk ash (natural coagulants) by the Batch device approach, using two variables, pH values ranging from 5-8 and contact times between 0.25-5 hrs. All wastewater samples were collected after treatment by adsorbents and examined for determination of residual heavy metal concentrations: Pb, Ni, Zn and Cu by atomic absorption spectroscopy (AAS), turbidity, pH, total dissolved salts (TDS), electrical conductivity (EC) and total salinity (TS). The results obtained indicate The coagulation process' highest level of effectiveness was 95.2% for gum-silica composite with the weight 8 gm for reducing turbidity. In comparison, The coagulation process's least effective efficiency was 80.6%, with the weight 4 gm of gum-silica composite. On the other pH values, Turbidity, TDS, TS, and EC were reduced in the waste water sample after being treated by gum-silica composite under standard water values. This mixture can be used to remove heavy water pollutants during treatment.

Scopus Crossref
View Publication
Publication Date
Sun Dec 01 2019
Journal Name
Journal Of Ecological Engineering
Biosorption of Heavy Metals from Synthetic Wastewater by Using Macro Algae Collected from Iraqi Marshlands
...Show More Authors

View Publication
Scopus (17)
Crossref (16)
Scopus Clarivate Crossref
Publication Date
Mon Jun 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Removal of COD from Petroleum refinery Wastewater by Electro-Coagulation Process Using SS/Al electrodes
...Show More Authors
Abstract<p>In the present study, the effectiveness of a procedure of electrocoagulation for removing chemical oxygen demand (COD) from the wastewater of petroleum refinery has been evaluated. Aluminum and stainless steel electrodes were used as a sacrificial anode and cathode respectively. The effect of current density (4-20mAcm<sup>−2</sup>), pH (3-11), and NaCl concentration (0-4g/l) on efficiency of removal of chemical oxygen demand was investigated. The results have shown that increasing of current density led to increase the efficiency of COD removal while increasing NaCl concentration resulted in decreasing of COD removal efficiency. Effect of pH was found to be lowering COD re</p> ... Show More
View Publication
Scopus (39)
Crossref (25)
Scopus Crossref
Publication Date
Wed Nov 30 2022
Journal Name
Desalination And Water Treatment
Removal of amoxicillin from wastewater by adsorption onto activated carbon prepared from sunflower seed hulls
...Show More Authors

In this study, the potential of adsorption of amoxicillin antibiotic (AMOX) from aqueous solutions using prepared activated carbon (AC) was studied. The used AC was prepared from an inexpensive and available precursor (sunflower seed hulls (SSH)) and activated by potassium hydroxide (KOH). The prepared AC was examined for its ability to remove AMOX from aqueous contaminated solutions and characterized with the aid of N2 -adsorption/desorption isotherm Brunauer–Emmett– Teller, scanning electron microscopy, energy-dispersive X-ray spectroscopy and Fourier-transform infrared. Zeta potential of the prepared activated carbon from sunflower seed hulls (SSHAC) were studied in relation to AMOX adsorption. The physical and chemical propert

... Show More
View Publication Preview PDF
Crossref (8)
Clarivate Crossref
Publication Date
Mon Jun 30 2025
Journal Name
Basrah Journal Of Agricultural Sciences
Diesel Engine Efficiency under Varying Loads and Engine Oil Contaminated with Safe levels of Glycol
...Show More Authors

Although allowable amounts of glycol contamination in diesel engine oil, no research has been conducted on how these levels and varying loads affect engine performance. The research used a four-stroke diesel engine to investigate the effect of different glycol contamination levels (0, 120, and 220 ppm) under two engine loads (4.5 and 9 kW). Brake specific fuel consumption, brake thermal efficiency, friction power, and exhaust gas temperature were measured to determine the engine performance. The experiment used the factorial arrangement in a completely randomized design (CRD) with three replicates. Increasing the contamination levels from 0 to 120 and then to 220 ppm under constant engine load significantly increased brake specific fuel con

... Show More
Preview PDF
Scopus
Publication Date
Sun Aug 25 2019
Journal Name
Civil Engineering Journal
Optimum Efficiency of PV Panel Using Genetic Algorithms to Touch Proximate Zero Energy House (NZEH)
...Show More Authors

By optimizing the efficiency of a modular simulation model of the PV module structure by genetic algorithm, under several weather conditions, as a portion of recognizing the ideal plan of a Near Zero Energy Household (NZEH), an ideal life cycle cost can be performed. The optimum design from combinations of NZEH-variable designs, are construction positioning, window-to-wall proportion, and glazing categories, which will help maximize the energy created by photovoltaic panels. Comprehensive simulation technique and modeling are utilized in the solar module I-V and for P-V output power. Both of them are constructed on the famous five-parameter model.  In addition, the efficiency of the PV panel is established by the genetic algorithm

... Show More
View Publication
Scopus (36)
Crossref (33)
Scopus Clarivate Crossref
Publication Date
Tue Sep 07 2021
Journal Name
Nanomaterials
Transformation of Silver Nanoparticles (AgNPs) during Lime Treatment of Wastewater Sludge and Their Impact on Soil Bacteria
...Show More Authors

This study investigated the impact of lime stabilization on the fate and transformation of AgNPs. It also evaluated the changes in the population and diversity of the five most relevant bacterial phyla in soil after applying lime-stabilized sludge containing AgNPs. The study was performed by spiking an environmentally relevant concentration of AgNPs (2 mg AgNPs/g TS) in sludge, applying lime stabilization to increase pH to above 12 for two hours, and applying lime-treated sludge to soil samples. Transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS) were used to investigate the morphological and compositional changes of AgNPs during lime stabilization. After the application of lime stabilized sludge to

... Show More
View Publication
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Aip Conf. Proc.
Removal of chromium ions from a real wastewater of leather industry using electrocoagulation and reverse osmosis processes
...Show More Authors

This study focused on treatment of real wastewater rejected from leather industry in Al-Nahrawan city in Iraq by Electrocoagulation (EC) process followed by Reverse Osmosis (RO) process. The successive treatment was applied due to high concentration of Cr3+ ions (about 1600 ppm) rejected in wastewater of this industry and for applying EC with moderate power consumption and better results of produced water. In Electrocoagulation process (EC), the effect of NaCl concentration (1.5, 3 g/l), current density (C.D.) (15-25 mA/cm2), electrolysis time (1-2 h), and distance between electrodes (E.D.) (1-2 cm) were examined in a batch cell by implementing Taguchi experimental design. According to the results obtained from multiple regression and signa

... Show More
View Publication Preview PDF
Scopus (20)
Crossref (16)
Scopus Crossref
Publication Date
Tue Oct 01 2019
Journal Name
Journal Of Engineering
Mechanisms of Plant-Correlation Phytoremediation of Al-Daura Iraqi Refinery Wastewater Using Wetland Plant from Tigris River
...Show More Authors

In developing countries, conventional physico-chemical methods are commonly used for removing contaminants. These methods are not efficient and very costly. However, new in site strategy with high treatment efficiency and low operation cost named constructed wetland (CW) has been set. In this study, Phragmites australis was used with free surface batch system to estimate its ability to remediate total
petroleum hydrocarbons (TPH) and chemical oxygen demand (COD) from Al-Daura refinery wastewater. The system operated in semi-batch, thus, new wastewater was weekly added to the plant for 42 days. The results showed high removal percentages (98%) of TPH and (62.3%) for COD. Additionally, Phragmites australis biomass increased significant

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Journal Of Physics: Conference Series
Synthesis, Characterization, Antibacterial study and Efficiency of Inhibition of New di-β-enaminone Ligand and its Complexes
...Show More Authors
Abstract<p>The new ligand [3,3’-(1,2-phenylenebis(azanediyl))bis(5,5-dimethylcyclohex-2-en-1-one)] (L) derived from 5,5-Dimethylcyclohexane-1,3-dione with 1,2-phenylenediamine was used to prepare a new chain of metal complexes of Mn(ii), Co(ii), Ni(ii), Cu(ii), Cd(ii) and Zn(ii) by inclusive formula [M(L)]Cl2. Characterized compounds on the basis of <sup>1</sup>H, <sup>13</sup>CNMR (for ligand (L)), FT-IR and U.V spectrum, melting point, molar conduct, %C, %H and %N, the percentage of the metal in complexes %M, Magnetic susceptibility, thermal studies (TGA), while its corrosion inhibition for (plain steel) in tap water is studied by weight loss. These measurements proved th</p> ... Show More
View Publication
Scopus (8)
Crossref (6)
Scopus Crossref
Publication Date
Mon Jun 26 2023
Journal Name
Asia-pacific Journal Of Chemical Engineering
Sustainable environment through using porous materials: A review on wastewater treatment
...Show More Authors
Abstract<p>Porous materials play an important role in creating a sustainable environment by improving wastewater treatment's efficacy. Porous materials, including adsorbents or ion exchangers, catalysts, metal–organic frameworks, composites, carbon materials, and membranes, have widespread applications in treating wastewater and air pollution. This review examines recent developments in porous materials, focusing on their effectiveness for different wastewater pollutants. Specifically, they can treat a wide range of water contaminants, and many remove over 95% of targeted contaminants. Recent advancements include a wider range of adsorption options, heterogeneous catalysis, a new UV/H<sub>2</sub>O<j></j></p> ... Show More
View Publication
Scopus (25)
Crossref (24)
Scopus Clarivate Crossref