High frequency (HF) communications have an important role in long distances wireless communications. This frequency band is more important than VHF and UHF, as HF frequencies can cut longer distance with a single hopping. It has a low operation cost because it offers over-the-horizon communications without repeaters, therefore it can be used as a backup for satellite communications in emergency conditions. One of the main problems in HF communications is the prediction of the propagation direction and the frequency of optimum transmission (FOT) that must be used at a certain time. This paper introduces a new technique based on Oblique Ionosonde Station (OIS) to overcome this problem with a low cost and an easier way. This technique uses the international shortwave radio stations and the global beacons as the OIS transmitter and a normal HF receiver as the OIS receiver to verify the direction of propagation and the FOT. In addition, the critical frequency for F2 layer (fof2) was estimated in this paper for Iraq experimentally. The proposed technique was tested practically, and FOT range between Baghdad and other remote stations was estimated successfully using a radio receiver from Kenwood model R 1000 with a long wire antenna as a passive OIS system receiver.
Background: Obesity tends to appear in modern societies and constitutes a significant public health problem with an increased risk of cardiovascular diseases.
Objective: This study aims to determine the agreement between actual and perceived body image in the general population.
Methods: A descriptive cross-sectional study design was conducted with a sample size of 300. The data were collected from eight major populated areas of Northern district of Karachi Sindh with a period of six months (10th January 2020 to 21st June 2020). The Figure rating questionnaire scale (FRS) was applied to collect the demographic data and perception about body weight. Body mass index (BMI) used for ass
... Show MoreThe research aim was to observe the distribution pattern of
Photonic Crystal Fiber (PCF) based on the Surface Plasmon Resonance (SPR) effect has been proposed to detect polluted water samples. The sensing characteristics are illustrated using the finite element method. The right hole of the right side of PCF core has been coated with chemically stable gold material to achieve the practical sensing approach. The performance parameter of the proposed sensor is investigated in terms of wavelength sensitivity, amplitude sensitivity, sensor resolution, and linearity of the resonant wavelength with the variation of refractive index of analyte. In the sensing range of 1.33 to 1.3624, maximum sensitivities of 1360.2 nm ∕ RIU and 184 RIU−1 are achieved with the high sensor resolutions of 7
... Show MoreNatural dye sensitized solar cell was prepared using strawberry and pomegranate dyes with anatase nanocrystalline titanium dioxide powder. A study of the optical properties of the two dyes, involving the absorption spectrum was determined in the visible region. I-V characteristics under illumination were performed. The results showed that the two prepared dye sensitized solar cells have acceptable values efficiency about (0.94 with Fill factor (45)) and (0.74 with Fill factor (44)) for strawberry and pomegranate dyes, respectively.
Electrospun nanofiber membranes are employed in a variety of applications due to its unique features. the nanofibers' characterizations are effected by the polymer solution. The used solvent for dissolving the polymer powder is critical in preparing the precursor solution. In this paper, the Polyacrylonitrile (PAN)-based nanofibers were prepared in a concentration of 10 wt.% using various solvents (NMP, DMF, and DMSO). The surface morphology, porosity, and the mechanical strength of the three prepared 10 wt.% PAN-based nanofibers membranes (PAN/NMP, PAN/DMF, and PAN/DMSO) were characterized using the Scanning Electron Microscopy (SEM), Dry-wet Weights method, and Dynamic Mechanical Analyzer (DMA). Using DMF as a solvent resulted in a lon
... Show MoreVarious speech enhancement Algorithms (SEA) have been developed in the last few decades. Each algorithm has its advantages and disadvantages because the speech signal is affected by environmental situations. Distortion of speech results in the loss of important features that make this signal challenging to understand. SEA aims to improve the intelligibility and quality of speech that different types of noise have degraded. In most applications, quality improvement is highly desirable as it can reduce listener fatigue, especially when the listener is exposed to high noise levels for extended periods (e.g., manufacturing). SEA reduces or suppresses the background noise to some degree, sometimes called noise suppression alg
... Show More