Preferred Language
Articles
/
qBf-OpMBVTCNdQwCHM9M
Evaluation of the Performance of Kernel Non-parametric Regression and Ordinary Least Squares Regression
...Show More Authors

Researchers need to understand the differences between parametric and nonparametric regression models and how they work with available information about the relationship between response and explanatory variables and the distribution of random errors. This paper proposes a new nonparametric regression function for the kernel and employs it with the Nadaraya-Watson kernel estimator method and the Gaussian kernel function. The proposed kernel function (AMS) is then compared to the Gaussian kernel and the traditional parametric method, the ordinary least squares method (OLS). The objective of this study is to examine the effectiveness of nonparametric regression and identify the best-performing model when employing the Nadaraya-Watson kernel estimator method with the proposed kernel function (AMS), the Gaussian kernel, and the ordinary least squares (OLS) method. Additionally, it determines which method yields the most accurate results when analyzing nonparametric regression models and provides valuable insights for practitioners looking to apply these techniques in real-world scenarios. However, criteria such as generalized cross-validation (GCV), mean square error (MSE), and coefficient determination are used to select the most efficient estimated model. Simulated data was used to evaluate the performance and efficiency of estimators using different sample sizes. The results favorable the simulation illustrate that the Nadaraya-Watson kernel estimator using the proposed kernel function (AMS) exhibited favorable and superior performance compared to other methods. The coefficients of determination indicate that the highest values attained were 98%, 99%, and 99%. The proposed function (AMS) yielded the lowest MSE and GCV values across all samples. Therefore, this suggests that the model can generate precise predictions and enhance the performance of the focused data.

Scopus Crossref
View Publication
Publication Date
Wed Oct 17 2018
Journal Name
Journal Of Economics And Administrative Sciences
discriminate analysis and logistic regression by use partial least square
...Show More Authors

Abstract

   The method binery logistic regression and linear discrimint function of the most important statistical methods used in the classification and prediction when the data of the kind of binery (0,1) you can not use the normal regression therefore resort to binary logistic regression and linear discriminant function in the case of two group in the case of a Multicollinearity problem between the data (the data containing high correlation) It became not possible to use binary logistic regression and linear discriminant function, to solve this problem, we resort to Partial least square regression.

In this, search th

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jul 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Comparison some of methods wavelet estimation for non parametric regression function with missing response variable at random
...Show More Authors

Abstract

 The problem of missing data represents a major obstacle before researchers in the process of data analysis in different fields since , this problem is a recurrent one in all fields of study including social , medical , astronomical and clinical experiments .

The presence of such a problem within the data to be studied may influence negatively on the analysis and it may lead to misleading conclusions , together with the fact that these conclusions that result from a great bias caused by that problem in spite of the efficiency of wavelet methods but they are also affected by the missing of data , in addition to the impact of the problem of miss of accuracy estimation

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Apr 04 2023
Journal Name
Journal Of Techniques
Comparison Between the Kernel Functions Used in Estimating the Fuzzy Regression Discontinuous Model
...Show More Authors

Some experiments need to know the extent of their usefulness to continue providing them or not. This is done through the fuzzy regression discontinuous model, where the Epanechnikov Kernel and Triangular Kernel were used to estimate the model by generating data from the Monte Carlo experiment and comparing the results obtained. It was found that the. Epanechnikov Kernel has a least mean squared error.

View Publication Preview PDF
Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Semi Parametric Logistic Regression Model with the Outputs Representing Trapezoidal Intuitionistic Fuzzy Number
...Show More Authors

In this paper, the fuzzy logic and the trapezoidal fuzzy intuitionistic number were presented, as well as some properties of the trapezoidal fuzzy intuitionistic number and semi- parametric logistic regression model when using the trapezoidal fuzzy intuitionistic number. The output variable represents the dependent variable sometimes cannot be determined in only two cases (response, non-response)or (success, failure) and more than two responses, especially in medical studies; therefore so, use a semi parametric logistic regression model with the output variable (dependent variable) representing a trapezoidal fuzzy intuitionistic number.

the model was estimated on simulati

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Dec 30 2023
Journal Name
Journal Of Economics And Administrative Sciences
About Semi-parametric Methodology for Fuzzy Quantile Regression Model Estimation: A Review
...Show More Authors

In this paper, previous studies about Fuzzy regression had been presented. The fuzzy regression is a generalization of the traditional regression model that formulates a fuzzy environment's relationship to independent and dependent variables. All this can be introduced by non-parametric model, as well as a semi-parametric model. Moreover, results obtained from the previous studies and their conclusions were put forward in this context. So, we suggest a novel method of estimation via new weights instead of the old weights and introduce

Paper Type: Review article.

another suggestion based on artificial neural networks.

View Publication Preview PDF
Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of the method of partial least squares and the algorithm of singular values decomposion to estimate the parameters of the logistic regression model in the case of the problem of linear multiplicity by using the simulation
...Show More Authors

The logistic regression model is an important statistical model showing the relationship between the binary variable and the explanatory variables.                                                        The large number of explanations that are usually used to illustrate the response led to the emergence of the problem of linear multiplicity between the explanatory variables that make estimating the parameters of the model not accurate.    

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Aip Conference Proceedings
Using the artificial TABU algorithm to estimate the semi-parametric regression function with measurement errors
...Show More Authors

Artificial Intelligence Algorithms have been used in recent years in many scientific fields. We suggest employing artificial TABU algorithm to find the best estimate of the semi-parametric regression function with measurement errors in the explanatory variables and the dependent variable, where measurement errors appear frequently in fields such as sport, chemistry, biological sciences, medicine, and epidemiological studies, rather than an exact measurement.

Scopus Crossref
Publication Date
Mon Jun 22 2015
Journal Name
International Journal Of Industrial Management
Regression Factors of Small Businesses Performance: Conceptual Model
...Show More Authors

This study represents an attempt to develop a model that demonstrates the relationship between HRM Practices, Governmental Support and Organizational performance of small businesses. Furthermore, this study assay to unfold the socalled “Black Box” to clarify the ambiguous relationship between HRM practices and organizational performance by considering the pathway of logical sequence influence. The model of this study consists two parts, the first part devoted to examining the causal relationships among HRM practices, employees’ outcomes, and organizational performance. The second part assesses the direct relationship between the governmental support and organizational performance. It is hypothesized that HRM practices positively influ

... Show More
View Publication Preview PDF
Publication Date
Fri Apr 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
A Comparison Between Classic Local Least Estimatop And Bayesian Methoid For Estimating Semiparametric Logistic Regression Model
...Show More Authors

Semi-parametric models analysis is one of the most interesting subjects in recent studies due to give an efficient model estimation. The problem when the response variable has one of two values either 0 ( no response) or one – with response which is called the logistic regression model.

We compare two methods Bayesian and . Then the results were compared using MSe criteria.

A simulation had been used to study the empirical behavior for the Logistic model , with  different sample sizes and variances. The results using represent that the Bayesian method is better than the   at small samples sizes.

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jun 01 2009
Journal Name
Journal Of Economics And Administrative Sciences
Use of lower squares and restricted boxes In the estimation of the first-order self-regression parameter AR (1) (simulation study)
...Show More Authors

Use of lower squares and restricted boxes
In the estimation of the first-order self-regression parameter
AR (1) (simulation study)

View Publication Preview PDF
Crossref