This work studies the performance of zeolite permeable reactive barrier in removing cadmium from a contaminated shallow aquifer. Batch tests have been performed to characterize the equilibrium sorption properties of the zeolite in cadmium-containing aqueous solutions. A 1D numerical finite difference model has been developed to describe pollutant transport within groundwater taking pollutant sorption on the permeable reactive barrier (PRB), which is performed by Langmuir equation, into account. Numerical results show that the PRB starts to saturate after a period of time (~120 h) due to reduction of the retardation factor, indicating a decrease in the percentage of zeolite functionality. However, a reasonable agreement between model predict
... Show MorePorous silicon (P-Si) has been produced in this work by photoelectrochemical (PEC) etching process. The irradiation has been achieved using diode laser of (2 W) power and 810 nm wavelength. The influence of various irradiation times on the properties of P-Si material such as P-Si layer thickness, surface aspect, pore diameter and the thickness of walls between pores as well as porosity and etching rate was investigated by depending on the scanning electron micrograph (SEM) technique and gravimetric measurements.
This paper presents the study and analysis, analytically and numerical of circular cylindrical shell pipe model, under variable loads, transmit fluid at the high velocity state (fresh water). The analytical analysis depended on the energy observation principle (Hamilton Principle), where divided all energy in the model to three parts , strain energy, kinetic energy and transmitted energy between flow and solid (kinetic to potential energy). Also derive all important equations for this state and approach to final equation of motion, free and force vibration also derived. the relations between the displacement of model function of velocity of flow, length of model, pipe thickness, density of flowed with location coordinate x-axis and angle
... Show MoreThe Manganese doped zinc sulfide nanoparticles of the cubic zinc blende structure with the average crystallite size of about 3.56 nm were synthesized using a coprecipitation method using Thioglycolic Acid as an external capping agent for surface modification. The ZnS:Mn2+ nanoparticles of diameter 3.56 nm were manufactured through using inexpensive precursors in an efficient and eco-friendly way. X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) spectroscopy are used to examine the structure, morphology and chemical composition of the nanoparticles. The antimicrobial activity of (ZnS:Mn2+) nanocrystals was investigated by measuring the diameter of inhibition zone using well diffusion mechanism
... Show More<span lang="EN-US">Iraqi people have been without energy for nearly two decades, even though their geographic position provides a high intensity of radiation appropriate for the construction of solar plants capable of producing significant quantities of electricity. Also, the annual sunny hours in Iraq are between 3,600 to 4,300 hours which makes it perfect to use the photovoltaics arrays to generate electricity with very high efficiency compared to many countries, especially in Europe. This paper shows the amount of electric energy generated by the meter square of crystalline silicon in the photovoltaic (PV) array that already installed in 18 states in Iraq for each month of the year. The results of the meter-square of PV arr
... Show MoreElectrochemical Grinding (ECG) process is a mechanically assisted electrochemical process for material processing. The process is able to successfully machine electrically conducting harder materials at faster rate with improved surface finish and dimensional control. This research studies the effect of applied current, electrolyte concentration, spindle speed and the gap between workpiece and tool on hardness and material removal rate during electrochemical grinding for stainless steel 316. The characteristic features of the electrochemical grinding process are explored through Taguchi-design-based experimental studies. The better hardness can be obtained at 10 A of the current, 150 g/l of the electrolyte concentration, 0.3 mm of gap an
... Show MoreIn this study, titanium dioxide (TiO2 (are synthesized by sol– gel simple method. Thin films of sol, gel, and sol- gel on relatively flat glass substrates are applied with Spin coating technique with multilayers. The optical and morphological properties (studied using AFM) of TiO2 layers show good properties, with particles diameters less than 4 nm for all prepared samples and have maximum length 62 nm for TiO2 gel thin films of three layers. The results show low roughness values for all films especially for 4 layers sol (8.37nm), which improve the application in dye sensitive solar cell (DSSc) .
Surface plasmon resonance could increase the efficiency of solar cells , when light is trapped by the noble metallic nanoparticles arrangement at and into the silicon solar cell (SSC) surface. Pure noble metal (silver and gold) nanoparticles (NPs) have been synthesized as colloids in de-ionized water (DW) by pulsed laser ablation (PLA) process at optimum laser fluence. Silicon solar cell with low efficiency was converted to plasmonic silicon solar cell by overcasting deposition method of silver nanoparticles on the front side of the SSC. The performance of plasmonic solar cell (PSC) was increased due to light trapping. Two mechanisms were involved : inserting silver
... Show MorePure Cu (CZTSe) and Ag dopant CZTSe (CAZTSe) thin films with Ag content of 0.1 and 0.2 were fabricated on coring glass substrate at R.T with thickness of 800nm by thermal evaporation method. Comparison between the optical characteristics of pure Cu and Ag alloying thin films was done by measuring and analyzing the absorbance and transmittance spectra in the range of (400-1100)nm. Also, the effect of annealing temperature at 373K and 473K on these characteristics was studied. The results indicated that all films had high absorbance and low transmittance in visible region, and the direct bang gap of films decreases with increasing Ag content and annealing temperature. Optical parameters like extinction coefficientrefractive index, and
... Show MoreObjective: the aim of this study is to invest age and determine the effect of using (2) packing
technique (conventional and new tension technique) on hardness of (2) types of heat cure acrylic
resin which are (Ivoclar and Qual dental type).
Methodology : this study was intended the using of two types of heat cure acrylic (IVoclar and
Qual dental type) which are used in construction of complete denture which packed in two different
packing technique (conventional and new tension technique) and accomplished by using a total of
(40) specimens in diameter of ( 2mm thickness, 2 cm length and 1 cm width) . This specimens were
sectioned and subdivide into (4) group each (10) specimens for one group , then signed as (A, Al B