The density-based spatial clustering for applications with noise (DBSCAN) is one of the most popular applications of clustering in data mining, and it is used to identify useful patterns and interesting distributions in the underlying data. Aggregation methods for classifying nonlinear aggregated data. In particular, DNA methylations, gene expression. That show the differentially skewed by distance sites and grouped nonlinearly by cancer daisies and the change Situations for gene excretion on it. Under these conditions, DBSCAN is expected to have a desirable clustering feature i that can be used to show the results of the changes. This research reviews the DBSCAN and compares its performance with other algorithms, such as the traditional number of clustering, K-mean particle swarm optimization (PSO), and Grey–Wolf optimization (GWO). This method offers high performance for improvement. The DBSCAN algorithm also offers better results of clusters and gives better performance assessment according to the results shown in this study.
The indicators were important core for any work, and may be occurring this indicators way of communicating among planers and decision makers, even also for public participating, do make any decision. The urban and regional planning is one of those science highly depending on using indictors, for two reasons, first, way to communicating ideas between specialist and non-specialist, (politician and decision makers), the second one, this field are multidisciplinary science, so the need indictors to clearing thoughts among different backgrounds in one team, as common language.
This research tries to clear importance of GIS in forming and building Spatial Planning Indicators, to cross communication problem among planning g
... Show MoreThis paper deals to how to estimate points non measured spatial data when the number of its terms (sample spatial) a few, that are not preferred for the estimation process, because we also know that whenever if the data is large, the estimation results of the points non measured to be better and thus the variance estimate less, so the idea of this paper is how to take advantage of the data other secondary (auxiliary), which have a strong correlation with the primary data (basic) to be estimated single points of non-measured, as well as measuring the variance estimate, has been the use of technique Co-kriging in this field to build predictions spatial estimation process, and then we applied this idea to real data in th
... Show MoreUrban land uses of all kinds are the constituent elements of the urban spatial structure. Because of the influence of economic and social factors, cities in general are characterized by the dynamic state of their elements over time. Urban functions occur in a certain way with different spatial patterns. Hence, urban planners and the relevant urban management teams should understand the future spatial pattern of these changes by resorting to quantitative models in spatial planning. This is to ensure that future predictions are made with a high level of accuracy so that appropriate strategies can be used to address the problems arising from such changes. The Markov chain method is one of the quantitative models used in spatial planning to ana
... Show MoreA simple, sensitive and rapid method was used for the estimate of: Propranolol with Bi (III) to prove the efficiency, reliability and repeatability of the long distance chasing photometer (NAG-ADF-300-2) using continuous flow injection analysis. The method is based on a reaction between propranolol and Bi (III) in an aqueous medium to obtain a yellow precipitate. Optimum parameters were studied to increase the sensitivity for the developed method. A linear range for calibration graph was 0.1-25 mmol/L for cell A and 1-40 mmol/L for cell B, and LOD 51.8698 ng/200 µL and 363.0886 ng /200 µL , respectively to cell A and cell B with correlation coefficient (r) 0.9975 for cell A, 0.9966 for cell B, RSD% was lower than 1%, (n = 8) for the
... Show MoreWireless sensor networks (WSNs) represent one of the key technologies in internet of things (IoTs) networks. Since WSNs have finite energy sources, there is ongoing research work to develop new strategies for minimizing power consumption or enhancing traditional techniques. In this paper, a novel Gaussian mixture models (GMMs) algorithm is proposed for mobile wireless sensor networks (MWSNs) for energy saving. Performance evaluation of the clustering process with the GMM algorithm shows a remarkable energy saving in the network of up to 92%. In addition, a comparison with another clustering strategy that uses the K-means algorithm has been made, and the developed method has outperformed K-means with superior performance, saving ener
... Show MoreBackground: Potentially malignant oral disorders (PMODs) are common precursors of oral squamous cell carcinoma (OSCC). Neoangiogenesis and signalling are important intermediate biomarkers that may govern the progression of dysplastic mucosa into carcinoma. Aims: Evaluate the importance of CD34 and Wnt3 expression in PMODs and OSCCs in relation to their clinicopathological parameters. Settings and Design: Prospective cross-sectional study. Materials and Methods: Immunohistochemical staining for CD34 and Wnt3 was performed for 41 samples. These included 27 PMODs, six OSCCs and eight normal gingival and alveolar mucosa. Analysis of variance (ANOVA) and post-hoc tests were applied. P<0.05 was considered statistically significant. Results: CD34
... Show MoreA substantial matter to confidential messages' interchange through the internet is transmission of information safely. For example, digital products' consumers and producers are keen for knowing those products are genuine and must be distinguished from worthless products. Encryption's science can be defined as the technique to embed the data in an images file, audio or videos in a style which should be met the safety requirements. Steganography is a portion of data concealment science that aiming to be reached a coveted security scale in the interchange of private not clear commercial and military data. This research offers a novel technique for steganography based on hiding data inside the clusters that resulted from fuzzy clustering. T
... Show More