The pilgrimage takes place in several countries around the world. The pilgrimage includes the simultaneous movement of a huge crowd of pilgrims which leads to many challenges for the pilgrimage authorities to track, monitor, and manage the crowd to minimize the chance of overcrowding’s accidents. Therefore, there is a need for an efficient monitoring and tracking system for pilgrims. This paper proposes powerful pilgrims tracking and monitoring system based on three Internet of Things (IoT) technologies; namely: Radio Frequency Identification (RFID), ZigBee, and Internet Protocol version 6 (IPv6). In addition, it requires low-cost, low-power-consumption implementation. The proposed system can efficiently handle the pilgrimage challenges; namely: the language barrier, identifying of injured or dead pilgrims, directing lost pilgrims, knowing medical records of pilgrims, and the crowd management. Finally, another paramount characteristic of the proposed IoT-based system is allowing the authorities, the heath-givers, and the pilgrim’s family for real-time tracking and monitoring of pilgrim during the pilgrimage anytime, anywhere.
A new mathematical model describing the motion of manned maneuvering targets is presented. This model is simple to be implemented and closely represents the motion of maneuvering targets. The target maneuver or acceleration is correlated in time. Optimal Kalman filter is used as a tracking filter which results in effective tracker that prevents the loss of track or filter divergency that often occurs with conventional tracking filter when the target performs a moderate or heavy maneuver. Computer simulation studies show that the proposed tracker provides sufficient accuracy.
The Internet of Things (IoT) is an expanding domain that can revolutionize different industries. Nevertheless, security is among the multiple challenges that it encounters. A major threat in the IoT environment is spoofing attacks, a type of cyber threat in which malicious actors masquerade as legitimate entities. This research aims to develop an effective technique for detecting spoofing attacks for IoT security by utilizing feature-importance methods. The suggested methodology involves three stages: preprocessing, selection of important features, and classification. The feature importance determines the most significant characteristics that play a role in detecting spoofing attacks. This is achieved via two techniques: decision tr
... Show MoreInternet of Things (IoT) is a recent technology paradigm that creates a global network of machines and devices that are capable of communicating with each other. Security cameras, sensors, vehicles, buildings, and software are examples of devices that can exchange data between each other. IoT is recognized as one of the most important areas of future technologies and is gaining vast recognition in a wide range of applications and fields related to smart homes and cities, military, education, hospitals, homeland security systems, transportation and autonomous connected cars, agriculture, intelligent shopping systems, and other modern technologies. This book explores the most important IoT automated and smart applications to help the reader u
... Show MoreThis research is devoted to design and implement a Supervisory Control and Data Acquisition system (SCADA) for monitoring and controlling the corrosion of a carbon steel pipe buried in soil. A smart technique equipped with a microcontroller, a collection of sensors and a communication system was applied to monitor and control the operation of an ICCP process for a carbon steel pipe. The integration of the built hardware, LabVIEW graphical programming and PC interface produces an effective SCADA system for two types of control namely: a Proportional Integral Derivative (PID) that supports a closed loop, and a traditional open loop control. Through this work, under environmental temperature of 30°C, an evaluation and comparison were done for
... Show MoreAtmospheric transmission is disturbed by scintillation, where scintillation caused more beam divergence. In this work target image spot radius was calculated in presence of atmospheric scintillation. The calculation depend on few relevant equation based on atmospheric parameter (for Middle East), tracking range, expansion ratio of applied beam expander's, receiving unit lens F-number, and the laser wavelength besides photodetector parameter. At maximum target range Rmax =20 km, target image radius is at its maximum Rs=0.4 mm. As the range decreases spot radius decreases too, until the range reaches limit (4 km) at which target image spot radius at its minimum value (0.22 mm). Then as the range decreases, spot radius increases due to geom
... Show More