rop simulation models play a pivotal role in evaluating irrigation management strategies to improve water use in agriculture. The aim of this study is to verify the validity of the Aquacrop model of maize under the surface and sprinkler irrigation systems, and a cultivation system, borders and furrows, and for two varieties of Maze (Fajr and Drakma) At two different sites in Iraq, Babylon and Al-Qadisiyah governorates. An experiment was conducted to evaluate the performance of the Aquacrop model in simulating canopy cover (CC), biomass (B), dry yield, harvest index (HI), and water productivity (WP). The results of RMSE, R2, MAE, d, NSE, CC, Pe indicated good results and high compatibility between measured and simulated values. The highest achieved results were identical to the method of sprinkler irrigation due to the decrease in the amount of water consumed and the furrows cultivation method as the aerial roots were covered and the cultivar was Drakma. The highest values for the statistical data were R2 (90 and 96%), RMSE (0.60, 0.73), MAE (0.5, 0.67), d (0.97, 0.97), NSE (0.87, 0.90), for Babylon and Al-Qadisiyah sites, respectively. As for the CC values, they were very compatible with the values of R2 and ranged between (92 - 99) %. The prediction error was Pe and minor errors were found. Thus, the Aquacrop model can be used reliably to evaluate the effectiveness of proposed irrigation management strategies for maize.
In this study, the chamomile flowers (Matricaria recutitaL) which grow in Iraqi Kurdistan region during the seasons of (2008) are collected. The percentage of essential oil was determined by using steam distillation and the extraction of flowers performed with petroleum ether (70-80) ºC and methanol 70% using ultrasonic extraction. Total phenolic compounds were determined from methanol extracts by using Folin-Ciocalteu method. The extracts were evaluated by thin layer chromatography, ultraviolet absorption and the biological activities were evaluated through their antibacterial action against two types of bacteria using hole method. The flowers showed a composition of 0.071% ash, 0.4% essential oil, 3.2% non oily compounds, 4% oil, 1.9% mo
... Show MoreThe anatomical features of Agave americana L. leaf have been described, transverse sections of the leaf have been examined, the epidermis is single-layered on both surfaces, the stomata are sunken and mesophyll is (2-3) layers of parenchyma cells, vascular bundles are collateral type. The pollen of A. americana was studied. The observation was made with L.M. (Light microscope) and S.E.M. (Scanning electron microscope) to determine the significance of pollen features as taxonomic characters. The pollen was monades, homopolar, monosulcate, and with large size, subprolate in shape from P/E ratio (Polar axis/ Equatorial diameter) and furrow length and width, exine thickness and ornamentation.
The Capparis spinosa L. is a species has a great interest in the field of traditional medicine for its pharmacological properties with many bioactive compounds. Our study is aiming at the recovery of this species through a phytochemical analysis and an evaluation of antibacterial and antioxidant activities of leaves of Capparis spinosa L. collected from natural habitats within the region of Al-Jadriya, Baghdad, Iraq. Phytochemical investigation demonstrated the presence of flavonoids, phenols, alkaloids, tannins, and glycosides in the methanolic extract of leaves. The quantitative analysis of total phenolic contents is being performed by Folin-Ciocalteau method and expressed in terms of gallic acid equivalents. C. spinosa exhibited progress
... Show MoreWhen scheduling rules become incapable to tackle the presence of a variety of unexpected disruptions frequently occurred in manufacturing systems, it is necessary to develop a reactive schedule which can absorb the effects of such disruptions. Such responding requires efficient strategies, policies, and methods to controlling production & maintaining high shop performance. This can be achieved through rescheduling task which defined as an essential operating function to efficiently tackle and response to uncertainties and unexpected events. The framework proposed in this study consists of rescheduling approaches, strategies, policies, and techniques, which represents a guideline for most manufacturing companies operatin
... Show More<span lang="EN-US">The fundamental of a downlink massive multiple-input multiple-output (MIMO) energy- issue efficiency strategy is known as minimum mean squared error (MMSE) implementation degrades the performance of a downlink massive MIMO energy-efficiency scheme, so some improvements are adding for this precoding scheme to improve its workthat is called our proposal solution as a proposed improved MMSE precoder (PIMP). The energy efficiency (EE) study has also taken into mind drastically lowering radiated power while maintaining high throughput and minimizing interference issues. We further find the tradeoff between spectral efficiency (SE) and EE although they coincide at the beginning but later their interests become con
... Show More<span lang="EN-US">The fundamental of a downlink massive multiple-input multiple-output (MIMO) energy- issue efficiency strategy is known as minimum mean squared error (MMSE) implementation degrades the performance of a downlink massive MIMO energy-efficiency scheme, so some improvements are adding for this precoding scheme to improve its workthat is called our proposal solution as a proposed improved MMSE precoder (PIMP). The energy efficiency (EE) study has also taken into mind drastically lowering radiated power while maintaining high throughput and minimizing interference issues. We further find the tradeoff between spectral efficiency (SE) and EE although they coincide at the beginning but later their interests become con
... Show MoreWearable sensors are a revolutionary tool in agriculture because they collect accurate data on plant environmental conditions that affect plant growth in real-time. Moreover, this technology is crucial in increasing agricultural sustainability and productivity by improving irrigation strategies and water resource management. This review examines the role of wearable sensors in measuring plant water content, leaf and air humidity, stem flow, plant and air temperature, light, and soil moisture sensors. Wearable sensors are designed to monitor various plant physiological parameters in real-time. These data, obtained through wearable sensors, provide information on plant water use and physiology, making our agricultural choices more informed an
... Show More