Traffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational characteristics of traffic flow types; by considering only the position of the selected bits from the packet header. The proposal a learning approach based on deep packet inspection which integrates both feature extraction and classification phases into one system. The results show that the FDPHI works very well on the applications of feature learning. Also, it presents powerful adequate traffic classification results in terms of energy consumption (70% less power CPU utilization around 48% less), and processing time (310% for IPv4 and 595% for IPv6).
The study of entry and reentry dynamics for space vehicles is very important, particularly for manned vehicles and vehicles which is carry important devices and which can be used again. There are three types for entry dynamic, ballistics entry, glide entry and skip entry. The skip entry is used in this work for describing entry dynamics and determining trajectory. The inertia coordinate system is used to derive equations of motion and determines initial condition for skip entry. The velocity and drag force for entry vehicle, where generate it during entry into earth’s atmosphere are calculated in this work. Also the deceleration during descending and determining entry angles, velocities ratio and altitude ratio have been studied. The c
... Show MoreThe concept of the active contour model has been extensively utilized in the segmentation and analysis of images. This technology has been effectively employed in identifying the contours in object recognition, computer graphics and vision, biomedical processing of images that is normal images or medical images such as Magnetic Resonance Images (MRI), X-rays, plus Ultrasound imaging. Three colleagues, Kass, Witkin and Terzopoulos developed this energy, lessening “Active Contour Models” (equally identified as Snake) back in 1987. Being curved in nature, snakes are characterized in an image field and are capable of being set in motion by external and internal forces within image data and the curve itself in that order. The present s
... Show MoreThis study was conducted to identify the health status of children's nurseries in the city of Baghdad and to identify improper dietary habits practiced by these children have shown the results of this study that the same proportion of childhood diarrhea disease research and infections
Due to the advantages over other metallic materials, such as superior corrosion resistance, excellent biocompatibility, and favorable mechanical properties, titanium, its alloys and related composites, are frequently utilized in biomedical applications, particularly in orthopedics and dentistry. This work focuses on developing novel titanium-titanium diboride (TiB2; ceramic material) composites for dental implants where TiB2 additions were estimated to be 9 wt.%. In a steel mold, Ti-TiB2 composites were fabricated using a powder metallurgy technique and sintered for five hours at 1200 °C. Microstructural and chemical properties were analyzed by energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and X-ra
... Show MoreWellbore instability is one of the major issues observed throughout the drilling operation. Various wellbore instability issues may occur during drilling operations, including tight holes, borehole collapse, stuck pipe, and shale caving. Rock failure criteria are important in geomechanical analysis since they predict shear and tensile failures. A suitable failure criterion must match the rock failure, which a caliper log can detect to estimate the optimal mud weight. Lack of data makes certain wells' caliper logs unavailable. This makes it difficult to validate the performance of each failure criterion. This paper proposes an approach for predicting the breakout zones in the Nasiriyah oil field using an artificial neural network. It
... Show MorePrediction of penetration rate (ROP) is important process in optimization of drilling due to its crucial role in lowering drilling operation costs. This process has complex nature due to too many interrelated factors that affected the rate of penetration, which make difficult predicting process. This paper shows a new technique of rate of penetration prediction by using artificial neural network technique. A three layers model composed of two hidden layers and output layer has built by using drilling parameters data extracted from mud logging and wire line log for Alhalfaya oil field. These drilling parameters includes mechanical (WOB, RPM), hydraulic (HIS), and travel transit time (DT). Five data set represented five formations gathered
... Show More