Preferred Language
Articles
/
qBZQs4oBVTCNdQwCsKM8
FDPHI: Fast Deep Packet Header Inspection for Data Traffic Classification and Management
...Show More Authors

Traffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational characteristics of traffic flow types; by considering only the position of the selected bits from the packet header. The proposal a learning approach based on deep packet inspection which integrates both feature extraction and classification phases into one system. The results show that the FDPHI works very well on the applications of feature learning. Also, it presents powerful adequate traffic classification results in terms of energy consumption (70% less power CPU utilization around 48% less), and processing time (310% for IPv4 and 595% for IPv6).

Scopus Crossref
View Publication
Publication Date
Mon Jan 01 2024
Journal Name
Fifth International Conference On Applied Sciences: Icas2023
A modified Mobilenetv2 architecture for fire detection systems in open areas by deep learning
...Show More Authors

This research describes a new model inspired by Mobilenetv2 that was trained on a very diverse dataset. The goal is to enable fire detection in open areas to replace physical sensor-based fire detectors and reduce false alarms of fires, to achieve the lowest losses in open areas via deep learning. A diverse fire dataset was created that combines images and videos from several sources. In addition, another self-made data set was taken from the farms of the holy shrine of Al-Hussainiya in the city of Karbala. After that, the model was trained with the collected dataset. The test accuracy of the fire dataset that was trained with the new model reached 98.87%.

Scopus Crossref
Publication Date
Thu Aug 31 2023
Journal Name
Journal Européen Des Systèmes Automatisés​
Deep Learning Approach for Oil Pipeline Leakage Detection Using Image-Based Edge Detection Techniques
...Show More Authors

Natural gas and oil are one of the mainstays of the global economy. However, many issues surround the pipelines that transport these resources, including aging infrastructure, environmental impacts, and vulnerability to sabotage operations. Such issues can result in leakages in these pipelines, requiring significant effort to detect and pinpoint their locations. The objective of this project is to develop and implement a method for detecting oil spills caused by leaking oil pipelines using aerial images captured by a drone equipped with a Raspberry Pi 4. Using the message queuing telemetry transport Internet of Things (MQTT IoT) protocol, the acquired images and the global positioning system (GPS) coordinates of the images' acquisition are

... Show More
View Publication
Scopus (12)
Crossref (4)
Scopus Crossref
Publication Date
Mon Oct 04 2021
Journal Name
Journal Of Petroleum Exploration And Production Technology
Perforation location optimization through 1-D mechanical earth model for high-pressure deep formations
...Show More Authors

Optimum perforation location selection is an important study to improve well production and hence in the reservoir development process, especially for unconventional high-pressure formations such as the formations under study. Reservoir geomechanics is one of the key factors to find optimal perforation location. This study aims to detect optimum perforation location by investigating the changes in geomechanical properties and wellbore stress for high-pressure formations and studying the difference in different stress type behaviors between normal and abnormal formations. The calculations are achieved by building one-dimensional mechanical earth model using the data of four deep abnormal wells located in Southern Iraqi oil fields. The magni

... Show More
Publication Date
Mon Oct 02 2023
Journal Name
Journal Of Engineering
Microgrid Integration Based on Deep Learning NARMA-L2 Controller for Maximum Power Point Tracking
...Show More Authors

This paper presents a hybrid energy resources (HER) system consisting of solar PV, storage, and utility grid. It is a challenge in real time to extract maximum power point (MPP) from the PV solar under variations of the irradiance strength.  This work addresses challenges in identifying global MPP, dynamic algorithm behavior, tracking speed, adaptability to changing conditions, and accuracy. Shallow Neural Networks using the deep learning NARMA-L2 controller have been proposed. It is modeled to predict the reference voltage under different irradiance. The dynamic PV solar and nonlinearity have been trained to track the maximum power drawn from the PV solar systems in real time.

Moreover, the proposed controller i

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jun 15 2025
Journal Name
Iraqi Journal Of Laser
Performance Enhancement of Metasurface Grating Polarizer Using Deep Learning for Quantum Key Distribution Systems
...Show More Authors

Metasurface polarizers are essential optical components in modern integrated optics and play a vital role in many optical applications including Quantum Key Distribution systems in quantum cryptography. However, inverse design of metasurface polarizers with high efficiency depends on the proper prediction of structural dimensions based on required optical response. Deep learning neural networks can efficiently help in the inverse design process, minimizing both time and simulation resources requirements, while better results can be achieved compared to traditional optimization methods. Hereby, utilizing the COMSOL Multiphysics Surrogate model and deep neural networks to design a metasurface grating structure with high extinction rat

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jun 01 2018
Journal Name
Journal Of Engineering
Evaluation of Traffic Performance of Ahmed Urabi Square in Baghdad City
...Show More Authors

At present, smooth movement on the roads is a matter which is needed for each user. Many roads, especially in urban areas geometrically improved because of the number of vehicles increase from time to time.

In this research, Highway capacity software, HCS, 2000, will be adopted to determine the effectiveness of roundabout in terms of capacity of roundabout, delay and level of service of roundabout.

The results of the analysis indicated that the Ahmed Urabi roundabout operates under level of service F with an average control delay of 300 seconds per vehicle during the peak hours.

The through movements of Alkarrada- Aljadiriya direction (Major Direction) represent the heaviest traff

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Tue Jun 21 2022
Journal Name
Journal Of Planner And Development
Estimation of Traffic Volumes Distribution of Urban Streets in Baghdad City
...Show More Authors

The aim of this research is to explore the time and space distribution of traffic volume demand and investigate its vehicle compositions. The four selected links presented the activity of transportation facilities and different congestion points according to directions. The study area belongs to Al-Rusafa sector in Baghdad city that exhibited higher rate of traffic congestions of working days at peak morning and evening periods due to the different mixed land uses. The obtained results showed that Link (1) from Medical city intersection to Sarafiya intersection, demonstrated the highest traffic volume in both peak time periods morning AM and afternoon PM where the demand exceeds the capacity along the link corridor. Also, higher values f

... Show More
View Publication Preview PDF
Publication Date
Mon Feb 04 2019
Journal Name
Journal Of The College Of Education For Women
The Study of Traffic on The Roads The Governorate Of Karbala
...Show More Authors

The study of traffic on the roads the governorate of Karbala, Where is the study of traffic on the roads measure is necessary to determine the extent of the road and highlighting the importance of its role in the transfer of individuals from original to destination as well as the importance of the region that attracted its movement. This research aims to analyze the traffic in the governorate of Karbala through the study and analysis of surveys of traffic that were made in the governorate. Based on this analysis, it has been reached to identify volumes of the traffic and its density and how the roads are efficient and accommodating these volumes, the results of the traffic survey of the studied roads in the area of the study have shown t

... Show More
View Publication Preview PDF
Publication Date
Wed Dec 01 2021
Journal Name
Baghdad Science Journal
Useing the Hierarchical Cluster Analysis and Fuzzy Cluster Analysis Methods for Classification of Some Hospitals in Basra
...Show More Authors

In general, the importance of cluster analysis is that one can evaluate elements by clustering multiple homogeneous data; the main objective of this analysis is to collect the elements of a single, homogeneous group into different divisions, depending on many variables. This method of analysis is used to reduce data, generate hypotheses and test them, as well as predict and match models. The research aims to evaluate the fuzzy cluster analysis, which is a special case of cluster analysis, as well as to compare the two methods—classical and fuzzy cluster analysis. The research topic has been allocated to the government and private hospitals. The sampling for this research was comprised of 288 patients being treated in 10 hospitals. As t

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Tue Dec 03 2013
Journal Name
Ibn Al-haitham Journal For Pure And Applied Science
New adaptive satellite image classification technique for al Habbinya region west of Iraq
...Show More Authors