Increasing hydrocarbon recovery from tight reservoirs is an essential goal of oil industry in the recent years. Building real dynamic simulation models and selecting and designing suitable development strategies for such reservoirs need basically to construct accurate structural static model construction. The uncertainties in building 3-D reservoir models are a real challenge for such micro to nano pore scale structure. Based on data from 24 wells distributed throughout the Sadi tight formation. An application of building a 3-D static model for a tight limestone oil reservoir in Iraq is presented in this study. The most common uncertainties confronted while building the model were illustrated. Such as accurate estimations of cut-off permeability and porosity values. These values directly affect the calculation of net pay thickness for each layer in the reservoir and consequently affect the target of estimating reservoir initial oil in place (IOIP). Also, the main challenge to the static modeling of such reservoirs is dealing with tight reservoir characteristics which cause major reservoir heterogeneity and complexities that are problematic to the process of modeling reservoir simulation. Twenty seven porosity and permeability measurements from Sadi/Tanuma reservoir were used to validate log interpretation data for model construction. The results of the history matching process of the constructed dynamic model is also presented in this paper, including data related to oil production, reservoir pressure, and well flowing pressure due to available production.
The aim of this study is for testing the applicability of Ramamoorthy and Murphy method for identification of predominant pore fluid type, in Middle Eastern carbonate reservoir, by analyzing the dynamic elastic properties derived from the sonic log. and involving the results of Souder, for testing the same method in chalk reservoir in the North Sea region. Mishrif formation in Garraf oilfield in southern Iraq was handled in this study, utilizing a slightly-deviated well data, these data include open-hole full-set logs, where, the sonic log composed of shear and compression modes, and geologic description to check the results. The Geolog software is used to make the conventional interpretation of porosity, lithology, and saturation. Also,
... Show MoreThis study aims to show some of Imam Al-Bukhari's criticism of the Hadith from the Metn side, and part of his methodology in dealing with the correct hadiths that are tainted by a bug. This research focuses on what Imam Al-Bukhari summarized in his Sahih illusion of the narrator in his attribution, or uniqueness of the narrator, or to suggest a novel. We find that Bukhari sometimes abbreviates the hadeeth, and does not bring it out completely in his Sahih. He is satisfied with the abbreviated position but has done so because of a bug in it. The Bukhari usually does not declare his intention but knows this through tracking, inspection, and research of the correct hadiths.
—This paper studies the control motion of a single link flexible joint robot by using a hierarchical non-singular terminal sliding mode controller (HNTSMC). In comparison to the conventional sliding mode controller (CSMC), the proposed algorithm (NTSMC) not only can conserve characteristics of the convention CSMC, such as easy implementation, guaranteed stability and good robustness against system uncertainties and external disturbances, but also can ensure a faster convergence rate of the systems states to zero in a finite time and singularity free. The flexible joint robot (FJR) is a two degree of freedom (2DOF) nonlinear and underactuated system. The system here is modeled as a fourth order system by using Lagrangian method. Based on t
... Show MoreIn this work an experimental study is performed to evaluate the thermal performance
of locally made closed loop solar hot water system using a shell and helical coiled tube
heat exchanger as a storage tank. Several measurements are taken include inlet and outlet
temperatures of both collectors and supply water and temperature distribution within the
storage tank. This is beside the water flow rate in both collectors and load cycle. The
main parameters of the system are obtained.
A novel method for Network Intrusion Detection System (NIDS) has been proposed, based on the concept of how DNA sequence detects disease as both domains have similar conceptual method of detection. Three important steps have been proposed to apply DNA sequence for NIDS: convert the network traffic data into a form of DNA sequence using Cryptography encoding method; discover patterns of Short Tandem Repeats (STR) sequence for each network traffic attack using Teiresias algorithm; and conduct classification process depends upon STR sequence based on Horspool algorithm. 10% KDD Cup 1999 data set is used for training phase. Correct KDD Cup 1999 data set is used for testing phase to evaluate the proposed method. The current experiment results sh
... Show MoreA field-pilot scale slow sand filter (SSF) was constructed at Al-Rustamiya Sewage Treatment Plant (STP) in Baghdad city to investigate the removal efficiency in terms of Biochemical Oxygen Demand (BOD5), Chemical oxygen demand (COD), Total Suspended Solids (TSS) and Chloride concentrations for achieving better secondary effluent quality from this treatment plant. The SSF was designed at a 0.2 m/h filtration rate with filter area 1 m2 and total filter depth of 2.3 m. A filter sand media 0.35 mm in size and 1 m depth was supported by 0.2 m layer of gravel of size 5 mm. The secondary effluent from Al-Rustamiya STP was used as the influent to the slow sand filter. The results showed that the removal of BOD5, COD, TSS, and Chloride were
... Show MoreIn the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial
... Show More