Increasing hydrocarbon recovery from tight reservoirs is an essential goal of oil industry in the recent years. Building real dynamic simulation models and selecting and designing suitable development strategies for such reservoirs need basically to construct accurate structural static model construction. The uncertainties in building 3-D reservoir models are a real challenge for such micro to nano pore scale structure. Based on data from 24 wells distributed throughout the Sadi tight formation. An application of building a 3-D static model for a tight limestone oil reservoir in Iraq is presented in this study. The most common uncertainties confronted while building the model were illustrated. Such as accurate estimations of cut-off permeability and porosity values. These values directly affect the calculation of net pay thickness for each layer in the reservoir and consequently affect the target of estimating reservoir initial oil in place (IOIP). Also, the main challenge to the static modeling of such reservoirs is dealing with tight reservoir characteristics which cause major reservoir heterogeneity and complexities that are problematic to the process of modeling reservoir simulation. Twenty seven porosity and permeability measurements from Sadi/Tanuma reservoir were used to validate log interpretation data for model construction. The results of the history matching process of the constructed dynamic model is also presented in this paper, including data related to oil production, reservoir pressure, and well flowing pressure due to available production.
Background and purpose: Animal model helps researchers to evaluate new treatment plan for human and understand pathological mechanism involved in a development of disease. The use of rats as an animal model for Alzheimer's research has become a favorite among researchers. Rats are capable in mimicking Alzheimer disease due to their intelligence and quick adaptation to nature. At present there are several methods that can be used to induce Alzheimer's animals, but each method has advantages and disadvantages. We need to learn other methods that can provide many advantages and few disadvantages. The Amyloid-beta 42 (Aβ-42) and Reactive Oxygen Species (ROS) are thought to play an important role in the pathology of Alzheimer’s disease. Th
... Show MoreThis search include the synthesis of some new 1,3-oxazepine derivatives have been prepared, starting from reaction of L-ascorbic acid with dry acetone in presence of dry hydrogen chloride afforded the acetal (I). Treatment of the latter with p-nitrobenzoyl chloride in pyridine yielded the ester (II) which was dissolved in (65%) acetic acid in absolute ethanol yielded the glycol (III). The reaction of the glycol (III) with sodium periodate in distilled water at room temperature produced the aldehyde (IV). The compound (V) [4-(1,3-dioxoisoindolin-2-yl)benzoic acid] was synthesized by reaction p-aminobenzoic acid and phthalic anhydride in presence of (gla. CH3COOH). Reaction of compound (V) with thionyl chloride produced [4-(1,3-dioxoisoindoli
... Show MoreAllopurinol derivative were prepared by reacting the (1-chloroacetyl)-2-Hydropyrazolo{3,4-d}pyrimidine-4-oneiwith 5- methoxy- 2-aminoibenzothiazoleiunder certain conditions to obtain new compound ( N- (2-aminoacetyl (5-methoxy) benzothiazole -2yl) (A4), Reaction of 5-(P-dimethyl amine benzene)-2-amino-1,3,4- oxadiazole in the presence of potassium carbonate anhydrous to yield new compound (N-(2- aminoacetyl-5-(P-dimethyl amine benzene )-1,3,4-oxadiazoles-2-yl)(A30) and Azo compound (N-(5-(Azo-2-hydroxy-5-amino benzene)-1,3-Diazol-2yl)Allopurinol(A46). The structure of prepared compounds were confirmed by (FT-IR)
... Show MoreImage recognition is one of the most important applications of information processing, in this paper; a comparison between 3-level techniques based image recognition has been achieved, using discrete wavelet (DWT) and stationary wavelet transforms (SWT), stationary-stationary-stationary (sss), stationary-stationary-wavelet (ssw), stationary-wavelet-stationary (sws), stationary-wavelet-wavelet (sww), wavelet-stationary- stationary (wss), wavelet-stationary-wavelet (wsw), wavelet-wavelet-stationary (wws) and wavelet-wavelet-wavelet (www). A comparison between these techniques has been implemented. according to the peak signal to noise ratio (PSNR), root mean square error (RMSE), compression ratio (CR) and the coding noise e (n) of each third
... Show MoreThis study examines experimentally the performance of a horizontal triple concentric tube heat exchanger TCTHE made of copper metal using water as cooling fluid and oil-40 as hot fluid. Hot fluid enters the inner annular tube of the TCTHE in a direction at a temperature of 50, 60 and 70 oC and a flow rate of 20 l/hr. On the other hand, the cooling fluid enters the inner tube and the outer annular tube in the reverse direction (counter current flow) at a temperature of 25 oC and flow rates of 10, 15, 20, 25, 30 and 35 l/hr. The TCTHE is composed of three copper tubes with outer diameters of 34.925 mm, 22.25 mm, and 9.525 mm, and thicknesses of 1.27 mm, 1.143 mm, and 0.762 mm, respectively. TCTHE tube's length was 670
... Show MoreArtificial lift techniques are a highly effective solution to aid the deterioration of the production especially for mature oil fields, gas lift is one of the oldest and most applied artificial lift methods especially for large oil fields, the gas that is required for injection is quite scarce and expensive resource, optimally allocating the injection rate in each well is a high importance task and not easily applicable. Conventional methods faced some major problems in solving this problem in a network with large number of wells, multi-constrains, multi-objectives, and limited amount of gas. This paper focuses on utilizing the Genetic Algorithm (GA) as a gas lift optimization algorit
The purpose of this paper is to model and forecast the white oil during the period (2012-2019) using volatility GARCH-class. After showing that squared returns of white oil have a significant long memory in the volatility, the return series based on fractional GARCH models are estimated and forecasted for the mean and volatility by quasi maximum likelihood QML as a traditional method. While the competition includes machine learning approaches using Support Vector Regression (SVR). Results showed that the best appropriate model among many other models to forecast the volatility, depending on the lowest value of Akaike information criterion and Schwartz information criterion, also the parameters must be significant. In addition, the residuals
... Show More