The purpose of this paper is to model and forecast the white oil during the period (2012-2019) using volatility GARCH-class. After showing that squared returns of white oil have a significant long memory in the volatility, the return series based on fractional GARCH models are estimated and forecasted for the mean and volatility by quasi maximum likelihood QML as a traditional method. While the competition includes machine learning approaches using Support Vector Regression (SVR). Results showed that the best appropriate model among many other models to forecast the volatility, depending on the lowest value of Akaike information criterion and Schwartz information criterion, also the parameters must be significant. In addition, the residuals don’t have the serial correlation and ARCH effect, as well as these models, should have a higher value of log-likelihood and SVR-FIGARCH models managed to outperform FIGARCH models with normal and student’s t distributions. The SVR-FIGARCH model exhibited statistical significance and improved accuracy obtained with the SVM technique. Finally, we evaluate the forecasting performance of the various volatility models, and then we choose the best fitting model to forecast the volatility for each series, depending on three forecasting accuracy measures RMSE, MAE, and MAPE.
Various theories have been proposed since in last century to predict the first sighting of a new crescent moon. None of them uses the concept of machine and deep learning to process, interpret and simulate patterns hidden in databases. Many of these theories use interpolation and extrapolation techniques to identify sighting regions through such data. In this study, a pattern recognizer artificial neural network was trained to distinguish between visibility regions. Essential parameters of crescent moon sighting were collected from moon sight datasets and used to build an intelligent system of pattern recognition to predict the crescent sight conditions. The proposed ANN learned the datasets with an accuracy of more than 72% in comp
... Show MoreThe research aims to explain the role of huge data analyzes in measuring quality costs in the Iraqi company for the production of seed, and the research problem was diagnosed with the weakness of the approved method to measure quality costs, and the weak traditional systems of data analyzes, the researcher in the theoretical aspect relied on collecting sources and previous studies, as well as Adoption of the applied analytical approach in the practical aspect, as a set of financial analyzes were applied within the measurement of quality costs and a statement of the role of data analyzes in the practical side, the research concluded to a set of conc
... Show MoreThe fatty acid composition in the seed and flower of Ligustrun lucidum and olive oil was studied by Gas Chromatography. Results showed that the main components of seed oil were Palmitic (C16:0) 5,893% ,Palmitolic acid (C16:1)0,398%, Steaeic (C18:0)2,911% ,Oleic (C18:1)74,984%,Linoleic (C18:2) 12,959%,and Linolenic (C18:3) 0,997%. The proportion of unsaturated fatty acid was above 89,338%, so the seed oil of L. lucidum ait belonged to unsaturated oil which possessed promising application. The components of flower oil were Palmitic (C16:0) 65,674% ,Palmitolic acid (C16:1)6,516%, Steaeic (C18:0)2,641% ,Oleic (C18:1)14,707%,Linoleic (C18:2) 3,113%,and Linolenic (C18:3) 2,70%. The proportion of unsaturated fatty acid and saturated fatty acid wa
... Show MoreA simulation study is used to examine the robustness of some estimators on a multiple linear regression model with problems of multicollinearity and non-normal errors, the Ordinary least Squares (LS) ,Ridge Regression, Ridge Least Absolute Value (RLAV), Weighted Ridge (WRID), MM and a robust ridge regression estimator MM estimator, which denoted as RMM this is the modification of the Ridge regression by incorporating robust MM estimator . finialy, we show that RMM is the best among the other estimators
It is considered as one of the statistical methods used to describe and estimate the relationship between randomness (Y) and explanatory variables (X). The second is the homogeneity of the variance, in which the dependent variable is a binary response takes two values (One when a specific event occurred and zero when that event did not happen) such as (injured and uninjured, married and unmarried) and that a large number of explanatory variables led to the emergence of the problem of linear multiplicity that makes the estimates inaccurate, and the method of greatest possibility and the method of declination of the letter was used in estimating A double-response logistic regression model by adopting the Jackna
... Show More
It is considered as one of the statistical methods used to describe and estimate the relationship between randomness (Y) and explanatory variables (X). The second is the homogeneity of the variance, in which the dependent variable is a binary response takes two values (One when a specific event occurred and zero when that event did not happen) such as (injured and uninjured, married and unmarried) and that a large number of explanatory variables led to the emergence of the problem of linear multiplicity that makes the estimates inaccurate, and the method of greatest possibility and the method of declination of the letter was used in estimating A double-response logistic regression model by adopting the Jackna
... Show MoreReliable data transfer and energy efficiency are the essential considerations for network performance in resource-constrained underwater environments. One of the efficient approaches for data routing in underwater wireless sensor networks (UWSNs) is clustering, in which the data packets are transferred from sensor nodes to the cluster head (CH). Data packets are then forwarded to a sink node in a single or multiple hops manners, which can possibly increase energy depletion of the CH as compared to other nodes. While several mechanisms have been proposed for cluster formation and CH selection to ensure efficient delivery of data packets, less attention has been given to massive data co
There are many images you need to large Khoznah space With the continued evolution of storage technology for computers, there is a need nailed required to reduce Alkhoznip space for pictures and image compression in a good way, the conversion method Alamueja