The purpose of this paper is to model and forecast the white oil during the period (2012-2019) using volatility GARCH-class. After showing that squared returns of white oil have a significant long memory in the volatility, the return series based on fractional GARCH models are estimated and forecasted for the mean and volatility by quasi maximum likelihood QML as a traditional method. While the competition includes machine learning approaches using Support Vector Regression (SVR). Results showed that the best appropriate model among many other models to forecast the volatility, depending on the lowest value of Akaike information criterion and Schwartz information criterion, also the parameters must be significant. In addition, the residuals don’t have the serial correlation and ARCH effect, as well as these models, should have a higher value of log-likelihood and SVR-FIGARCH models managed to outperform FIGARCH models with normal and student’s t distributions. The SVR-FIGARCH model exhibited statistical significance and improved accuracy obtained with the SVM technique. Finally, we evaluate the forecasting performance of the various volatility models, and then we choose the best fitting model to forecast the volatility for each series, depending on three forecasting accuracy measures RMSE, MAE, and MAPE.
Purpose: This research is to identify the most important challenges for the local investment commissions and to develop solutions and proposals to encourage local and foreign investment in local governments in Iraq (the Iraqi provinces are irregular in the region). Theoretical Framework: This research suggests a conceptual framework for the local investment commissions in order to solve their problems, the most important of which was to identify the most critical challenges which are facing the Baghdad Investment Commission BIC and how to overcome them. Design/The methodology approach: Research involved a mixed-methods approach through two stages. During the first stage, the researcher gathered quantitative data from all inves
... Show MoreIntelligent or smart completion wells vary from conventional wells. They have downhole flow control devices like Inflow Control Devices (ICD) and Interval Control Valves (ICV) to enhance reservoir management and control, optimizing hydrocarbon output and recovery. However, to explain their adoption and increase their economic return, a high level of justification is necessary. Smart horizontal wells also necessitate optimizing the number of valves, nozzles, and compartment length. A three-dimensional geological model of the As reservoir in AG oil field was used to see the influence of these factors on cumulative oil production and NPV. After creating the dynamic model for the As reservoir using the program Petrel (2017.4), we
... Show MoreBackground: Gugglusterone has been reported to provide protection against inflammatory and oxidative reactions of different pathological conditions. Objectives: The main object of this research work is to evaluate the renoprotective effects of guggulsterone in the prevention of cisplatin-induced nephrotoxicity in rats via assessment of renal function and histological study. Materials and methods: Rats in this study were split into four groups which comprise a control group, an induction group, a third group receiving low-dose guggulsterone, and a fourth group receiving high-dose guggulsterone. Results: a single dose of cisplatin drug has jeopardisedrenal physiology that has been demonstrated in histopathology sections and elevation
... Show MoreAnomaly detection is still a difficult task. To address this problem, we propose to strengthen DBSCAN algorithm for the data by converting all data to the graph concept frame (CFG). As is well known that the work DBSCAN method used to compile the data set belong to the same species in a while it will be considered in the external behavior of the cluster as a noise or anomalies. It can detect anomalies by DBSCAN algorithm can detect abnormal points that are far from certain set threshold (extremism). However, the abnormalities are not those cases, abnormal and unusual or far from a specific group, There is a type of data that is do not happen repeatedly, but are considered abnormal for the group of known. The analysis showed DBSCAN using the
... Show MoreThe achievements of the art that we know today are questioned in motives that differ from what art knew before, including dramatic artistic transformations, which he called modern art.
In view of the enormity of such a topic, its ramifications and its complexity, it was necessary to confine its subject to the origin of the motives of the transformations of its first pioneers, and then to stand on what resulted from that of the data of vision in composition and drawing exclusively, and through exploration in that, we got to know the vitality of change from the art of its time.
And by examining the ruling contemporary philosophical concepts and their new standards and their epistemological role in contemporary life, since they includ
A Multiple System Biometric System Based on ECG Data
Multiple myeloma is hematological disease produces many complications in the bone, kidney, neural and other complications. The study aims to measure serum biomolecules like fetuin-A and resistin and determined the possibility to use these biomarkers as disease predictor. blood samples were isolated from 58 patients and 24 sex and age-matched control, serum then isolated, and proper ELISA kit then used to a determined level of B2 microglobulin, resistin, and fetuin-A. The result demonstrated significant increase in B2 microglobulin, fetuin-A and resistin in patients compare to control (1.3470.714 vs. 0.9130.253), p = 0.000, (14.00310.352 vs. 9.2594.264), p= 0.005, (1.9673.595 vs. 0.6040.622), p = 0.009, respectively. These di
... Show More