The purpose of this paper is to model and forecast the white oil during the period (2012-2019) using volatility GARCH-class. After showing that squared returns of white oil have a significant long memory in the volatility, the return series based on fractional GARCH models are estimated and forecasted for the mean and volatility by quasi maximum likelihood QML as a traditional method. While the competition includes machine learning approaches using Support Vector Regression (SVR). Results showed that the best appropriate model among many other models to forecast the volatility, depending on the lowest value of Akaike information criterion and Schwartz information criterion, also the parameters must be significant. In addition, the residuals don’t have the serial correlation and ARCH effect, as well as these models, should have a higher value of log-likelihood and SVR-FIGARCH models managed to outperform FIGARCH models with normal and student’s t distributions. The SVR-FIGARCH model exhibited statistical significance and improved accuracy obtained with the SVM technique. Finally, we evaluate the forecasting performance of the various volatility models, and then we choose the best fitting model to forecast the volatility for each series, depending on three forecasting accuracy measures RMSE, MAE, and MAPE.
Abstract
A surface fitting model is developed based on calorimeter data for two famous brands of household compressors. Correlation equations of ten coefficient polynomials were found as a function of refrigerant saturating and evaporating temperatures in range of (-35℃ to -10℃) using Matlab software for cooling capacity, power consumption, and refrigerant mass flow rate.
Additional correlations equations for these variables as a quick choice selection for a proper compressor use at ASHRAE standard that cover a range of swept volume range (2.24-11.15) cm3.
The result indicated that these surface fitting models are accurate with in ± 15% for 72 compressors model of cooling cap
... Show MoreMorphometric traits or body conformation traits also called linear body measurements are important in predicting marketing body weight especially for commercial breeders and producers. The total number of reared Domyati ducklings are 168 hatched, at marketing age (8 wks.) 44 brown and 14 white Domyati ducks were used to estimate the body weight and body measurements such as shank length (ShL), keel length (KL), body circumference (BC), breast length (BrL), breast width (BrW), beak width (BL), and body length (BL). Our results showed that there is no significant difference between both white and brown Domyati ducks for body measurements. There was high positive correlation among body weight and body measurements on both white and bro
... Show MoreThis study aim to identify the concept of web based information systems since its one of the important topics that is usually omitted by our organizations, in addition to, designing a web based information system in order to manage the customers data of Al- Rasheed bank, as a unified information system that is specialized to the banking deals of the customers with the bank, and providing a suggested model to apply the virtual private network as a tool that is to protect the transmitted data through the web based information system.
This study is considered important because it deals with one of the vital topics nowadays, namely: how to make it possible to use a distributed informat
... Show MoreThis paper deals with studying the effect of hole inclination angle on computing slip velocity and consequently its effect on lifting capacity. The study concentrates on selected vertical wells in Rumaila field, Southern Iraq. Different methods were used to calculate lifting capacity. Lifting capacity is the most important factor for successful drilling and which reflex on preventing hole problems and reduces drilling costs. Many factors affect computing lifting capacity, so hence the effect of hole inclination angle on lifting capacity will be shown in this study. A statistical approach was used to study the lifting capacity values which deal with the effect of hole
... Show MoreAbstract
This study deals with the fluctuations of oil revenues and its effect on the public debt. This can be studied through the indicators of debt sustainability, the financial, and economic indicators which express the risk of debt. The study focuses on clarification of the public debt path and its management both domestic and foreign. The sustainability of debt takes an important role according the macroeconomic variables. This study stresses the relationship between the rental economy in Iraq and the risk of the public debt, it is very important to work high oil prices, and on investigating during high work to establish a fund to support the budget deficit. This will reduce future risks arising from the use of publi
... Show MoreThe current study deals with estimating the protein concentration and the effect of fish weight on protein concentration values in red and white muscles in two different regions ( R1 : Anterior region lies 2 cm behind the head and R2: posterior region lies 2cm from caudal fin (in two types of bony fish, namely common carp (Cyprinus carpio) and Nile tilapia (Oreochromis niloticus). Samples were collected from Karmat Ali river- north of Basrah between October 2019 and February 2020. The protein was extracted using protein extraction buffer, the current study show that the average of protein concentration in red muscles of Nile tilapia ranged between 7.74-7.4 mg / ml and ( 6.8-8.85 mg / ml) in R1 and R2 region re
... Show MoreUrban land price is the primary indicator of land development in urban areas. Land prices in holly cities have rapidly increased due to tourism and religious activities. Public agencies are usually facing challenges in managing land prices in religious areas. Therefore, they require developed models or tools to understand land prices within religious cities. Predicting land prices can efficiently retain future management and develop urban lands within religious cities. This study proposed a new methodology to predict urban land prices within holy cities. The methodology is based on two models, Linear Regression (LR) and Support Vector Regression (SVR), and nine variables (land price, land area,
... Show MoreThis research aims to analyze and simulate biochemical real test data for uncovering the relationships among the tests, and how each of them impacts others. The data were acquired from Iraqi private biochemical laboratory. However, these data have many dimensions with a high rate of null values, and big patient numbers. Then, several experiments have been applied on these data beginning with unsupervised techniques such as hierarchical clustering, and k-means, but the results were not clear. Then the preprocessing step performed, to make the dataset analyzable by supervised techniques such as Linear Discriminant Analysis (LDA), Classification And Regression Tree (CART), Logistic Regression (LR), K-Nearest Neighbor (K-NN), Naïve Bays (NB
... Show MoreA simple analytical method was used in the present work for the simultaneous quantification of Ciprofloxacin and Isoniazid in pharmaceutical preparations. UV-Visible spectrophotometry has been applied to quantify these compounds in pure and mixture solutions using the first-order derivative method. The method depends on the first derivative spectrophotometry using zero-cross, peak to baseline, peak to peak and peak area measurements. Good linearity was shown in the concentration range of 2 to 24 μg∙mL-1 for Ciprofloxacin and 2 to 22 μg∙mL-1 for Isoniazid in the mixture, and the correlation coefficients were 0.9990 and 0.9989 respectively using peak area mode. The limits of detection (LOD) and limits of quantification (LOQ) wer
... Show More