Imaging by Ultrasound (US) is an accurate and useful modality for the assessment of gestational age (GA), estimation fetal weight, and monitoring the fetal growth during pregnancy, is a routine part of prenatal care, and that can greatly impact obstetric management. Estimation of GA is important in obstetric care, making appropriate management decisions requires accurate appraisal of GA. Accurate GA estimation may assist obstetricians in appropriately counseling women who are at risk of a preterm delivery about likely neonatal outcomes, and it is essential in the evaluation of the fetal growth and detection of intrauterine growth restriction. There are many formulas are used to estimate fetal GA in the world, but it's not specify for Iraqi population and leading to some error in GA estimation results, so the objective of this study is to innovate GA estimation model for Iraqi people. This study was performed in the department of Obstetrics and Gynecology in Al- Yarmouk Teaching Hospital and AL- Alawiya Teaching Hospital in Baghdad, Iraq, during 2019 on 200 pregnant women of singleton and normal pregnancies, fetal GA (20-40) weeks (W). The obtained dataset (fetal biometry), were utilized to create GA estimation model in Iraq using IBM SPSS Version 23 software package (IBM^® Software). The statistical analysis of proposed GA model showed, the correlation (R) of model is 0.987 it is very high value and this is a good result to obtain the best regression model. as well as the Std error of Estimation was 0.61095 this is very small value and indicate the best result. The significant of model P=0.000 That means the model, as a whole, is a significant fit to the data (because P < 0.05).
The aim of the research is to identify the suitability of a patrol model in evaluating the financial performance of Iraqi banks. The financial reports of five Iraqi commercial banks were approved as a sample for research for the period from 2015 to 2020. The most common financial ratios were adopted for the purpose of measuring the five elements of the model, which are capital adequacy, profitability, credit risk, bankal efficiency and liquidity. The results showed the possibility of using the PATROL model in evaluating the performance of Iraqi banks, as it gave a realistic image of the reality of Iraqi banks in terms of high capital adequacy index and high liquidity, as well as fluctuation in profitability index, not to mention the prob
... Show MoreToday’s modern medical imaging research faces the challenge of detecting brain tumor through Magnetic Resonance Images (MRI). Normally, to produce images of soft tissue of human body, MRI images are used by experts. It is used for analysis of human organs to replace surgery. For brain tumor detection, image segmentation is required. For this purpose, the brain is partitioned into two distinct regions. This is considered to be one of the most important but difficult part of the process of detecting brain tumor. Hence, it is highly necessary that segmentation of the MRI images must be done accurately before asking the computer to do the exact diagnosis. Earlier, a variety of algorithms were developed for segmentation of MRI images by usin
... Show Moreالحمدُ للهِ رب العالمين ، والصلاة والسلام على نبيه الأمين محمد r وعلى آله الطيبين الطاهرين ، وأصحابه الغر الميامين:
تعد الصورة السمعية مفهوما بيانيا نجده في البلاغة العربية واضحاً مؤثرا، مؤديا دورا جوهريا في إيصال الفكرة التي يروم الأديب إيصالها إلى المتلقي ولا تبدو السمعية واضحة إلاّ إذا نظر إليها في حالة أدبيه تهز كيان الشاعر  
... Show MoreThe Mauddud reservoir, Khabaz oil field which is considered one of the main carbonate reservoirs in the north of Iraq. Recognizing carbonate reservoirs represents challenges to engineers because reservoirs almost tend to be tight and overall heterogeneous. The current study concerns with geological modeling of the reservoir is an oil-bearing with the original gas cap. The geological model is establishing for the reservoir by identifying the facies and evaluating the petrophysical properties of this complex reservoir, and calculate the amount of hydrocarbon. When completed the processing of data by IP interactive petrophysics software, and the permeability of a reservoir was calculated using the concept of hydraulic units then, there
... Show MoreMachine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 a
... Show MoreIn this paper, our aim is to solve analytically a nonlinear social epidemic model as an initial value problem (IVP) of ordinary differential equations. The mathematical social epidemic model under study is applied to alcohol consumption model in Spain. The economic cost of alcohol consumption in Spain is affected by the amount of alcohol consumed. This paper refers to the study of alcohol consumption using some analytical methods. Adomian decomposition and variation iteration methods for solving alcohol consumption model have used. Finally, a compression between the analytic solutions of the two used methods and the previous actual values from 1997 to 2007 years is obtained using the absolute and
... Show MoreMonaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achi
... Show MoreThe purpose of this paper is to develop a hybrid conceptual model for building information modelling (BIM) adoption in facilities management (FM) through the integration of the technology task fit (TTF) and the unified theory of acceptance and use of technology (UTAUT) theories. The study also aims to identify the influence factors of BIM adoption and usage in FM and identify gaps in the existing literature and to provide a holistic picture of recent research in technology acceptance and adoption in the construction industry and FM sector.