This paper proposes a new approach to model and analyze erect posture, based on a spherical inverted pendulum which is used to mimic the body posture. The pendulum oscillates in two directions, [Formula: see text] and [Formula: see text], from which the mathematical model was derived and two torque components in oscillation directions were introduced. They are estimated using stabilometric data acquired by a foot pressure mapping system. The model was quantitatively investigated using data from 19 participants, who were first were classified into three groups, according to the foot arch-index. Stabilometric data were then collected and fed into the model to estimate the torque’s components. The components were statistically processed, and the results revealed that the components in direction [Formula: see text] are able to reject intrinsic perturbation. The frequency spectrum of the components in direction [Formula: see text] was processed using fast Fourier transform, and the results showed the feasibility of the component in segregating foot deformities. In addition, high-arched foot cases tended to be more stable than other cases because the exerted torque is less. The torque profiles estimated by our model were compared with the profiles derived from a classical inverted pendulum. In most cases, our results showed a significant change ( t-test p < 0.05).
The increasing use of polymeric materials in the daily life, leads to challenges in the processing industry to deliver high performance materials with affordable terms. However, new processing techniques lead to high costs. In order to reduce processing costs it is necessary to understand the non-Newtonian behavior of the polymers in their molten state to be able to simulate the processes before the construction of the plants starts. Here the shear thinning behavior of the viscosity of polymeric melts is essential. Thus, this paper deals with the experimental investigation of the thermo-rheological behavior of the viscosity of one of the most used polymers (Polypropylene) over a wide range of temperatures and shear rates. Furthermo
... Show MoreIn Iraq most of the small buildings deployed a conventional air conditioning technology which typically uses electrically driven compressor systems which exhibits several clear disadvantages such as high energy consumption, high electricity at peak loads. In this work a thermal performance of air conditioning system combined with a solar collector is investigated theoretically. The hybrid air conditioner consists of a semi hermetic compressor, water cooled shell and tube condenser, thermal expansion valve and coil with tank evaporator. The theoretical analysis included a simulation for the solar assisted air-conditioning system using EES software to analyze the effect of different parameters on the power consumption of c
... Show MoreIn this research the effect of grain size and effect of La2O3 doping on densification rate for the initial and intermediate stages of sintering were studied .The experimental results for α – cristobilite powder are modeled using ( L2-Regression ) technique in studying the effect of grain size and La2O3 doping using three particles size (6.12, 8.92, 13.6 ) µm, with undoped initial powder and with La2O3 doping . The mathematical simulation showes that the densification rates increase as the initial particles sizes decrease and vice versa. This shows that the densification depends directly on the initial compact density which reflects the contacts area between the particles . How
... Show MoreIn this work, the adsorption of reactive yellow dye (Remazol yellow FG dye) by granular activated carbon (GAC) was investigated using batch and continuous process. The batch process involved determination the equilibrium isotherm curve either favorable or unfavorable by estimation relation between adsorption capacity and concentration of dye at different dosage of activated carbon. The results were fitted with equilibrium isotherm models Langmuir and Freundlich models with R2value (>0.97). Batch Kinetic study showed good fitting with pseudo second order model with R2 (0.987) at contact time 5 h. which provesthat the adsorption is chemisorptions nature. Continuous study was done by fixed bed column where breakthrough time was increased
... Show MoreIn this paper, a mathematical model consisting of the prey- predator model with disease in both the population is proposed and analyzed. The existence, uniqueness and boundedness of the solution are discussed. The existences and the stability analysis of all possible equilibrium points are studied. Numerical simulation is carried out to investigate the global dynamical behavior of the system.
The flavonoglycone hesperidin is recognized as a potent anti-inflammatory, anticancer, and antioxidant agent. However, its poor bioavailability is a crucial bottleneck regarding its therapeutic activity. Gold nanoparticles are widely used in drug delivery because of its unique properties that differ from bulk metal. Hesperidin loaded gold nanoparticles were successfully prepared to enhance its stability and bioactive potential, as well as to minimize the problems associated with its absorption. The free radical scavenging activities of hesperidin, gold nanoparticles, and hesperidin loaded gold nanoparticles were compared with that of Vitamin C and subsequently evaluated in vitro using 2,2-diphenyl-1-picrylhydrazyl assay. The antioxi
... Show More