The present work aims to investigate the aerodynamic characteristics of the winglet cant angle of Boeing 737-800 wing numerically and experimentally. The wing contain two swept angles 38.3o and 29.13o respectively, taper ratio 0.15 and aspect ratio 8.04. The wing involves three types of airfoils sections. Four cant angles for blended winglet have been considered (0o, 34o, 60o, 83.3o). The winglet has been analyzed to find the best cant angle for the wing without and with winglet. These models have been tested theoretically at Reynolds number of 2.06 x106 in order to study the winglet aerodynamic characteristics which consist of coefficient of Drag, coefficient of lift and Lift to drag ratio, pitching moment coefficient and bending moment coefficient for (0o, 2o, 4o, 6o, 8o, 10o) angles of attack. SOLIDWORK 2016 software, was used to design the geometry of the wing and winglet. ANSYS FLUENT 17.0 in three dimensions with (k - ε) turbulent model was used to solve the governing equations. The experimental tests were carried out in an open low subsonic wind tunnel of 70cm × 70cm ×150cm test section at Reynolds number of 4.33 x105. The experimental lift, drag forces and pitching moment measurement were considered by three component balance device at different angles of attack. The results show that 34o cant angle is the best angle, at which 2-3% increase in lift coefficient, 2-3.9% decrease in drag coefficient, 3.5-6% increase in pitching moment coefficient and 3-6.6% increase in lift to drag coefficient by using blended winglet. Good agreement between the experimental and computational results are shown.
In this work, an experimental investigation has been done for heat transfer by natural-convection through a horizontal concentric annulus with porous media effects. The porous structure in gap spacing consists of a glass balls and replaced by plastic (PVC) balls with different sizes. The outer surface of outer tube is isothermally cooled while the outer surface of inner tube is heated with constant heat flux condition. The inner tube is heated with different supplied electrical power levels. Four different radius ratios of annulus are used. The effects of porous media material, particles size and annulus radius ratio on heat dissipation in terms of average Nusselt number have been analyzed. |
Concrete structures is affected by a deleterious reaction, which is known as Alkali Aggregate Reaction (AAR). AAR can be defined as a chemical reaction between the alkali content in the pore water solution of the cement paste and reactive forms of silica hold in the aggregate. This internal reaction produces expansion and cracking in concrete, which can lead to loss of strength and stiffness. Carbon fiber-reinforced polymer (CFRP) is one of the methods used to suppress further AAR expansion and rehabilitate and support damaged concrete structures. In this research, thirty-six cylindrical specimens were fabricated from non-reactive and reactive concrete, which contained fused silica as
This study aims to investigate the effect of changing skins material on the strength of sandwich plates with circular hole when subjected to mechanical loads. Theoretical, numerical and experimental analyses are done for sandwich plates with hole and with two face sheet materials. Theoretical analysis is performed by using sandwich plate theory which depends on the first order shear deformation theory for plates subjected to tension and bending separately. Finite element method was used to analyse numerically all cases by ANSYS program.
The sandwich plates were investigated experimentally under bending and buckling load separately. The relationship between stresses and the ratio of hole diameter to plate width (d/b) are built, by
... Show MoreThe current study was conducted to evaluate the effect a mixture of threespecies of arbuscular mycorrhizal fungi (Glomus etunicatum, G. leptotichum andRhizophagus intraradices) double and triple mixture and organic matter by usingplastic pots in the greenhouse at some mycorrhiza and physiological limitationscharacteristics in tomato plant after four and eight weeks of cultivation. Theresults of the determinants mycorrhiza significant increase the percentage ofmycorrhizal frequency F% dry weight of roots mycorrhiza (g.plant-1) andorganic matter in all mycorrhiza single, double and triple mixture after four andeight weeks cultivation treatments. The highest percentage of mycorrhizalfrequency and increase the dry weight of the root in the trea
... Show MoreContamination of surface and groundwater with excessive concentrations of fluoride is of significant health hazard. Adsorption of fluoride onto waste materials of no economic value could be a potential approach for the treatment of fluoride-bearing water. This experimental and modeling study was devoted to investigate for the first the fluoride removal using unmodified waste granular brick (WGB) in a fixed bed running in continuous mode. Characterization of WGB was carried out by FT-IR, SEM, and EDX analysis. The batch mode experiments showed that they were affected by several parameters including contact time, initial pH, and sorbent dosage. The best values of these parameters that provided maximum removal percent (82%) with the in
... Show MoreThe research aims at considering the reality of cognitive bias and organizational inertia as determinants of strategic change in a sample of companies listed in Amman Stock Market. To achieve objectives of the research, a model consisting of two independent variables has been designed, namely:
(1) The cognitive bias resulting from (escalating commitment, analogy, previous assumptions, representative generalization, command and control, convergent thinking), and (2) Organizational inertia due to (Icarus discrepancy, power distribution, rooted organizational culture), and a dependent variable, strategic change in (leadership patterns, strategy, the organization per se).
From the model two main hypotheses were derived;
... Show MoreThe dual nature of asphalt binder necessitates improvements to mitigate rutting and fatigue since it performs as an elastic material under the regime of rapid loading or cold temperatures and as a viscous fluid at elevated temperatures. The present investigation assesses the effectiveness of Nano Alumina (NA), Nano Silica (NS), and Nano Titanium Dioxide (NT) at weight percentages of 0, 2, 4, 6, and 8% in asphalt cement to enhance both asphalt binder and mixture performance. Binder evaluations include tests for consistency, thermal susceptibility, aging, and workability, while mixture assessments focus on Marshall properties, moisture susceptibility, resilient modulus, permanent deformation, and fatigue characteristics. NS notably im
... Show MoreThe dual nature of asphalt binder necessitates improvements to mitigate rutting and fatigue since it performs as an elastic material under the regime of rapid loading or cold temperatures and as a viscous fluid at elevated temperatures. The present investigation assesses the effectiveness of Nano Alumina (NA), Nano Silica (NS), and Nano Titanium Dioxide (NT) at weight percentages of 0, 2, 4, 6, and 8% in asphalt cement to enhance both asphalt binder and mixture performance. Binder evaluations include tests for consistency, thermal susceptibility, aging, and workability, while mixture assessments focus on Marshall properties, moisture susceptibility, resilient modulus, permanent deformation, and fatigue characteristics. NS notably im
... Show More