Malicious software (malware) performs a malicious function that compromising a computer system’s security. Many methods have been developed to improve the security of the computer system resources, among them the use of firewall, encryption, and Intrusion Detection System (IDS). IDS can detect newly unrecognized attack attempt and raising an early alarm to inform the system about this suspicious intrusion attempt. This paper proposed a hybrid IDS for detection intrusion, especially malware, with considering network packet and host features. The hybrid IDS designed using Data Mining (DM) classification methods that for its ability to detect new, previously unseen intrusions accurately and automatically. It uses both anomaly and misuse detection techniques using two DM classifiers (Interactive Dichotomizer 3 (ID3) classifier and Naïve Bayesian (NB) Classifier) to verify the validity of the proposed system in term of accuracy rate. A proposed HybD dataset used in training and testing the hybrid IDS. Feature selection is used to consider the intrinsic features in classification decision, this accomplished by using three different measures: Association rules (AR) method, ReliefF measure, and Gain Ratio (GR) measure. NB classifier with AR method given the most accurate classification results (99%) with false positive (FP) rate (0%) and false negative (FN) rate (1%).
The continuous increases in the size of current telecommunication infrastructures have led to the many challenges that existing algorithms face in underlying optimization. The unrealistic assumptions and low efficiency of the traditional algorithms make them unable to solve large real-life problems at reasonable times.
The use of approximate optimization techniques, such as adaptive metaheuristic algorithms, has become more prevalent in a diverse research area. In this paper, we proposed the use of a self-adaptive differential evolution (jDE) algorithm to solve the radio network planning (RNP) problem in the context of the upcoming generation 5G. The experimental results prove the jDE with best vecto
Record, verify, and showcase your peer review contributions in a format you can include in job and funding applications (without breaking reviewer anonymity).
Biosensor is defined as a device that transforms the interactions between bioreceptors and analytes into a logical signal proportional to the reactants' concentration. Biosensors have different applications that aim primarily to detect diseases, medicines, food safety, the proportion of toxins in water, and other applications that ensure the safety and health of the organism. The main challenge of biosensors is represented in the difficulty of obtaining sensors with accuracy, specific sensitivity, and repeatability for each use of the patient so that they give reliable results. The rapid diversification in biosensors is due to the accuracy of the techniques and materials used in the manufacturing process and the interrelationshi
... Show MoreStoring, transferring, and processing high-dimensional electroencephalogram (EGG) signals is a critical challenge. The goal of EEG compression is to remove redundant data in EEG signals. Medical signals like EEG must be of high quality for medical diagnosis. This paper uses a compression system with near-zero Mean Squared Error (MSE) based on Discrete Cosine Transform (DCT) and double shift coding for fast and efficient EEG data compression. This paper investigates and compares the use or non-use of delta modulation, which is applied to the transformed and quantized input signal. Double shift coding is applied after mapping the output to positive as a final step. The system performance is tested using EEG data files from the C
... Show MoreNumerical simulations were carried out to evaluate the effects of different aberrations modes on the performance of optical system, when observing and imaging the solar surface. Karhunen-Loeve aberrations modes were simulated as a wave front error in the aperture function of the optical system. To identify and apply the appropriate rectification that removes or reduces various types of aberration, their attribute must be firstly determined and quantitatively described. Wave aberration function is well suitable for this purpose because it fully characterizes the progressive effect of the optical system on the wave front passing through the aperture. The Karhunen-Loeve polynomials for circular aperture were used to
... Show MoreThe purpose of this paper is to build a simulation model by using HEC-RAS software to simulate the reality of water movement in the main river of Basra City (South of Iraq) which is known as Siraji-Khoura River. The main objective of the simulation is to detect areas where the water cycle is interrupted in some stations of the river stream, as this river has become an outlet for the disposal of sewage, leading to pollution and causing weakness in some sections of the river & obstructing the water cycle that takes place between this river and Shatt al – Arab river. A field survey data of the river and its banks were adopted to derive the grades, longitudinal and cross sections of the river, these data included three-dimensional coordinates
... Show MoreBackground: Lowering the amount of iodinated contrast material and tube voltage may increase pulmonary artery opacification and thrombus identification without compromising picture quality.
Objectives: To explore the efficiency of using lower tube voltage and a lower contrast medium dose for conducting computed tomography for pulmonary angiography (CTPA) aiming to increase its accuracy in detecting pulmonary thromboembolism (PTE).
Subjects and Methods:100 patients scheduled for CTPA with a preoperative diagnosis of PTE were grouped into two: group A, (50 patients) got 1 mL/kg at 120 kV and group B, (50 patients) received 0.5 mL/kg at 80 kV.The tec
... Show More