In this work, optical system with different aperture shapes (circular, square, elliptical and triangle aperture) has been used for efficiency evaluation when the system involved moving factor in ideal case (aberration free). The optical system evaluate far moving object, therefore the image forming at image plane due to point spread function (image formula of incoherently illuminated point object). A mathematical treatment has been used to getting results by Gaussian numerical calculations method. The results show priority of circular aperture when optical system that submits of moving factor.
Background: Ideal root canal obturation depends on many factors; one of them is good sealing of root canal without pores. The aim of this study was to determine the radiographic density of GuttaFlow® 2 with different obturation techniques using spiral computed tomography. Materials and Methods: Forty palatal roots of permanent maxillary first molar were used in this study. Following working length determination, root canal was prepared using rotary PROTAPER universal system. They were randomly divided into four groups of 10 roots each, the groups are Conventional lateral condensation with Apexit Plus sealer, Conventional lateral condensation with GuttaFlow® 2 as a sealer, Soft Core Regular with GuttaFlow® 2 as a sealer and singl
... Show MoreThe analytical study of optical bistability is concerned in a fully
optimized laser Fabry-Perot system. The related phenomena of
switching dynamics and optimization procedure are also included.
From the steady state of optical bistability equation can plot the
incident intensity versus the round trip phase shift (φ) for different
values of dark mistuning
12
,
6
,
3
,
1.5
0 , o
or finesse (F= 1, 5, 20,
100). In order to obtain different optical bistable loops. The inputoutput
characteristic for a nonlinear Fabry-Perot etalon of a different
values of finesse (F) and using different initial detuning (φ0) are used
in this rese
An optical video communication system is designed and constructed using pulse frequency modulation (PFM) technique. In this work PFM pulses are generated at the transmitter using voltage control oscillator (VCO) of width 50 ns for each pulse. Double frequency, equal width and narrow pulses are produced in the receiver be for demodulation. The use of the frequency doubling technique in such a system results in a narrow transmission bandwidth (25 ns) and high receiver sensitivity.
Infection with cryptosporidiosis endangers the lives of many people with immunodeficiency, especially HIV patients. Nitazoxanide is one of the main therapeutic drugs used to treat cryptosporidiosis. However, it is poorly soluble in water, which restricts its usefulness and efficacy in immunocompromised patients. Surfactants have an amphiphilic character which indicates their ability to improve the water solubility of the hydrophobic drugs. Our research concerns the synthesis of new cationic Gemini surfactants that have the ability to improve the solubility of the drug Nanazoxide. So, we synthesized cationic Gemini surfactants. N1,N1,N3,N3-tetramethyl-N1,N3-bis(2-octadecanamidoethyl)propane-1,3-diaminium bromide (CGSPS18) and 2,2‘-(etha
... Show MoreIn the present work theoretical relations are derived for the efficiency evaluation for the generation of the third and the fourth harmonics u$ing crystal cascading configuration. These relations can be applied to a wide class of nonlinear optical materials. Calculations are made for beta barium borate (BBO) crystal with ruby laser /.=694.3 nm . The case study involves producing the third harmonics at X. =231.4 nm of the fundamental beam. The formula of efficiency involves many parameters, which can be changed to enhance the efficiency. The results showed that the behavior of the efficiency is not linear with the crystal length. It is found that the efficiency increases when the input power increases. 'I'he walk-off length is calculated for
... Show MoreIn this research the performance of 5G mobile system is evaluated through the Ergodic capacity metric. Today, in any wireless communication system, many parameters have a significant role on system performance. Three main parameters are of concern here; the source power, number of antennas, and transmitter-receiver distance. User equipment’s (UEs) with equal and non-equal powers are used to evaluate the system performance in addition to using different antenna techniques to demonstrate the differences between SISO, MIMO, and massive MIMO. Using two mobile stations (MS) with different distances from the base station (BS), resulted in showing how using massive MIMO system will improve the performance than the standar
... Show More