Vegetation monitoring is considered an important application in remote sensing task due to variation of vegetation types and their distribution. The vegetation concentration around the Earth is increase in 5% in 2000 according to NASA monitoring. This increase is due to the Indian vegetable programs. In this research, the vegetation monitoring in Baghdad city was done using Normalized Difference Vegetation Index (NDVI) for temporal Landsat satellite images (Landsat 5 TM& Landsat 8 OIL). These images had been used and utilize in different times during the period from 2000, 2010, 2015 & 2017. The outcomes of the study demonstrate that a change in the vegetation Cover (VC) in Baghdad city. (NDVI) generally shows a low value of plant cover. The highest NDVI values were occur in 2000 and the lowest values for both years 2015-2017. This change is due to a correlation of climate indices such as precipitation, temperature, and dust storms. This study present that (NDVI) method is a powerful and useful way of monitoring vegetation. The calculation of vegetable areas show (43.3, 37.4, 9.1, and 22.7 Km2). The result were evaluated using (Environment for Visualizing Images ENVI) Ver. 4.8 package.
Focused research aims to provide a framework cognitive analytical nature of real estate investments and how they evaluated in the light of the assessment tools of modern theory of real options, and the possibility to rely on that theory in the detection of the true value of projects, real estate investments that would maximize the value of the investment decision taken, and the analysis of those projects that arise in the real estate markets and environments is the organization, which she was to make sure cases and high-risk, compared with entrances techniques, discounted cash flow (net present value). Based on the assumption lies in the possibility of the application of the implic
... Show MoreAccording to the measuring the relationship between organizational loyalty and job satisfaction among staff members at one college in the higher education ministry in Iraq by using exploratory factor analysis methods to extraction the components which have the major effects on the variables related to organizational loyalty and job satisfaction .
The research contains four basic topics، the first section related to methodology and regarding the conceptual framework it is discussed in the second section، and the third section concentrated at the presentation and the analysis Scientific results and practical results are section presented in the fourth.
The need to create the optimal water quality management process has motivated researchers to pursue prediction modeling development. One of the widely important forecasting models is the sessional autoregressive integrated moving average (SARIMA) model. In the present study, a SARIMA model was developed in R software to fit a time series data of monthly fluoride content collected from six stations on Tigris River for the period from 2004 to 2014. The adequate SARIMA model that has the least Akaike's information criterion (AIC) and mean squared error (MSE) was found to be SARIMA (2,0,0) (0,1,1). The model parameters were identified and diagnosed to derive the forecasting equations at each selected location. The correlation coefficien
... Show MoreThe reserve estimation process is continuous during the life of the field due to risk and inaccuracy that are considered an endemic problem thereby must be studied. Furthermore, the truth and properly defined hydrocarbon content can be identified just only at the field depletion. As a result, reserve estimation challenge is a function of time and available data. Reserve estimation can be divided into five types: analogy, volumetric, decline curve analysis, material balance and reservoir simulation, each of them differs from another to the kind of data required. The choice of the suitable and appropriate method relies on reservoir maturity, heterogeneity in the reservoir and data acquisition required. In this research, three types of rese
... Show More
Abstract
This research deals with Building A probabilistic Linear programming model representing, the operation of production in the Middle Refinery Company (Dura, Semawa, Najaif) Considering the demand of each product (Gasoline, Kerosene,Gas Oil, Fuel Oil ).are random variables ,follows certain probability distribution, which are testing by using Statistical programme (Easy fit), thes distribution are found to be Cauchy distribution ,Erlang distribution ,Pareto distribution ,Normal distribution ,and General Extreme value distribution . &
... Show MoreThe need to create the optimal water quality management process has motivated researchers to pursue prediction modeling development. One of the widely important forecasting models is the sessional autoregressive integrated moving average (SARIMA) model. In the present study, a SARIMA model was developed in R software to fit a time series data of monthly fluoride content collected from six stations on Tigris River for the period from 2004 to 2014. The adequate SARIMA model that has the least Akaike's information criterion (AIC) and mean squared error (MSE) was found to be SARIMA (2, 0, 0) (0,1,1). The model parameters were identified and diagnosed to derive the forecasting equations at each selected location. The correlat
... Show MoreIn this work, using GPS which has best accuracy that can be established set of GCPs, also two satellite images can be used, first with high resolution QuickBird, and second has low resolution Landsat image and topographic maps with 1:100,000 and 1:250,000 scales. The implementing of these factors (GPS, two satellite images, different scales for topographic maps, and set of GCPs) can be applying. In this study, must be divided this work into two parts geometric accuracy and informative accuracy investigation. The first part is showing geometric correction for two satellite images and maps.
The second part of the results is to demonstrate the features (how the features appearance) of topographic map or pictorial map (image map), Where i
The paper aims to propose Teaching Learning based Optimization (TLBO) algorithm to solve 3-D packing problem in containers. The objective which can be presented in a mathematical model is optimizing the space usage in a container. Besides the interaction effect between students and teacher, this algorithm also observes the learning process between students in the classroom which does not need any control parameters. Thus, TLBO provides the teachers phase and students phase as its main updating process to find the best solution. More precisely, to validate the algorithm effectiveness, it was implemented in three sample cases. There was small data which had 5 size-types of items with 12 units, medium data which had 10 size-types of items w
... Show MoreUsing the Neural network as a type of associative memory will be introduced in this paper through the problem of mobile position estimation where mobile estimate its location depending on the signal strength reach to it from several around base stations where the neural network can be implemented inside the mobile. Traditional methods of time of arrival (TOA) and received signal strength (RSS) are used and compared with two analytical methods, optimal positioning method and average positioning method. The data that are used for training are ideal since they can be obtained based on geometry of CDMA cell topology. The test of the two methods TOA and RSS take many cases through a nonlinear path that MS can move through tha
... Show More