Tight reservoirs have attracted the interest of the oil industry in recent years according to its significant impact on the global oil product. Several challenges are present when producing from these reservoirs due to its low to extra low permeability and very narrow pore throat radius. Development strategy selection for these reservoirs such as horizontal well placement, hydraulic fracture design, well completion, and smart production program, wellbore stability all need accurate characterizations of geomechanical parameters for these reservoirs. Geomechanical properties, including uniaxial compressive strength (UCS), static Young’s modulus (Es), and Poisson’s ratio (υs), were measured experimentally using both static and dynamic methods. Measured mechanical parameters on cores are used to correct well logs derived mechanical earth model (MEM). The analysis of measured mechanical properties of samples was conducted using the knowledge of cores mineralogy which was done in this study by the X-Ray Diffraction (XRD) test in addition to rock texture which was obtained using scanning electronic microscope (SEM). The study of SEM and TS of the samples explain the presence of vugges in some samples that cause its initial high porosity and consequently low UCS, also it causes lower compressional and shear velocity at these samples as compared to others. The minerals contained in each sample give a descriptive analysis of the difference of the values of both static and dynamic measured mechanical properties such as ultrasonic pulse traveling time, elastic properties, and UCS; this was explained through XRD results.
The use of credit cards for online purchases has significantly increased in recent years, but it has also led to an increase in fraudulent activities that cost businesses and consumers billions of dollars annually. Detecting fraudulent transactions is crucial for protecting customers and maintaining the financial system's integrity. However, the number of fraudulent transactions is less than legitimate transactions, which can result in a data imbalance that affects classification performance and bias in the model evaluation results. This paper focuses on processing imbalanced data by proposing a new weighted oversampling method, wADASMO, to generate minor-class data (i.e., fraudulent transactions). The proposed method is based on th
... Show MoreCorrosion Resistance Enhancement for low carbon steel is very important to extend its life service, the coating process is one of the methods which can using to achieve this, and it's the most important in surface treatments to improve the properties of metals and alloys surfaces such as corrosion resistance. In this work, low carbon steel was nitrided and coated with nano zinc using gas phase coating technical, to enhance the resistance of corrosion. The process included adding two layers. The first, a nitride layer, was added by precipitating nitrogen (N) gas, and the second, a zinc (Zn) layer, was added by precipitating Zn. The process of precipitating was carried out at different periods (5, 10, and 15 minutes). Scan electron mi
... Show MoreAbstract In this study, an investigation is conducted to realise the possibility of organic materials use in radio frequency (RF) electronics for RF-energy harvesting. Iraqi palm tree remnants mixed with nickel oxide nanoparticles hosted in polyethylene, INP substrates, is proposed for this study. Moreover, a metamaterial (MTM) antenna is printed on the created INP substrate of 0.8 mm thickness using silver nanoparticles conductive ink. The fabricated antenna performances are instigated numerically than validated experimentally in terms of S11 spectra and radiation patterns. It is found that the proposed antenna shows an ultra-wide band matching bandwidth to cover the frequencies from 2.4 to 10 GHz with bore-sight gain variation from 2.2 to
... Show MoreSol-gel method was use to prepare Ag-SiO2 nanoparticles. Crystal structure of the nanocomposite was investigated by means of X-ray diffraction patterns while the color intensity was evaluated by spectrophotometry. The morphology analysis using atomic force microscopy showed that the average grain sizes were in range (68.96-75.81 nm) for all samples. The characterization of Ag-SiO2 nanoparticles were investigated by using Scanning Electron Microscopy (SEM). Ag-SiO2 NPs are highly stable and have significant effect on both Gram positive and negative bacteria. Antibacterial properties of the nanocomposite were tested with the use of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacteria. The results have shown antibacteri
... Show MoreZiegler and Nichols proposed the well-known Ziegler-Nichols method to tune the coefficients of PID controller. This tuning method is simple and gives fixed values for the coefficients which make PID controller have weak adaptabilities for the model parameters variation and changing in operating conditions. In order to achieve adaptive controller, the Neural Network (NN) self-tuning PID control is proposed in this paper which combines conventional PID controller and Neural Network learning capabilities. The proportional, integral and derivative (KP, KI, KD) gains are self tuned on-line by the NN output which is obtained due to the error value on the desired output of the system under control. The conventio
... Show MoreThe question about the existence of correlation between the parameters A and m of the Paris function is re-examined theoretically for brittle material such as alumina ceramic (Al2O3) with different grain size. Investigation about existence of the exponential function which fit a good approximation to the majority of experimental data of crack velocity versus stress intensity factor diagram. The rate theory of crack growth was applied for data of alumina ceramics samples in region I and making use of the values of the exponential function parameters the crack growth rate theory parameters were estimated.
A confluence of forces has brought journalism and journalism education to a precipice. The rise of fascism, the advance of digital technology, and the erosion of the economic foundation of news media are disrupting journalism and mass communication (JMC) around the world. Combined with the increasingly globalized nature of journalism and media, these forces are posing extraordinary challenges to and opportunities for journalism and media education. This essay outlines 10 core principles to guide and reinvigorate international JMC education. We offer a concluding principle for JMC education as a foundation for the general education of college students.