The result of a developed mathematical model for predicting the design
parameters of the fiber Raman amplifier (FRA) are demonstrated. The amplification
parameters are tested at different pump power with different fiber length. Recently,
the FRA employed in optical communication system to increase the repeater distance
as will as the capacity of the communication systems. The output results show, that
high Raman gain can be achieved by high pumping power, long effective area that
need to be small for high Raman gain. High-stimulated Raman gain coefficient is
recommended for high Raman amplifier gain, the low attenuation of the pump and the
transmitted signal in the fiber lead to high Raman gain.
The topological indices of the "[(µ3-2, 5-dioxyocyclohexylidene)-bis ((2-hydrido)-nonacarbonyltriruthenium]” were studied within the quantum theory of atoms in the molecule (QTAIM), clusters are
analyzed using the density functional theory (DFT). The estimated topological variables accord with prior
descriptions of comparable transition metal complexes. The Quantum Theory of Atom, in molecules
investigation of the bridging core component, Ru3H2, revealed critical binding points (chemical bonding)
between Ru (1) and Ru (2) and Ru (3). Consequently, delocalization index for this non-bonding interaction
was calculated in the core of Ru3H2, the interaction is of the (5centre–5electron) class.
Photovoltaic (PV) devices are widely used renewable energy resources and have been increasingly manufactured by many firms and trademarks. This condition makes the selection of right product difficult and requires the development of a fast, accurate and easy setup that can be implemented to test available samples and select the cost effective, efficient, and reliable product for implementation. An automated test setup for PV panels using LabVIEW and several microcontroller-based embedded systems were designed, tested, and implemented. This PV testing system was fully automated, where the only human intervention required was the instalment of PV panel and set up of required testing conditions. The designed and implemented system was
... Show More. In recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction a
... Show MoreIn recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction acc
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show More