Biometrics represent the most practical method for swiftly and reliably verifying and identifying individuals based on their unique biological traits. This study addresses the increasing demand for dependable biometric identification systems by introducing an efficient approach to automatically recognize ear patterns using Convolutional Neural Networks (CNNs). Despite the widespread adoption of facial recognition technologies, the distinct features and consistency inherent in ear patterns provide a compelling alternative for biometric applications. Employing CNNs in our research automates the identification process, enhancing accuracy and adaptability across various ear shapes and orientations. The ear, being visible and easily captured in an image, possesses the unique characteristic that no two individuals share the same ear patterns. Consequently, our research proposes a system for individual identification based on ear traits, comprising three main stages: (1) pre-processing to extract the ear pattern (region of interest) from input images, (2) feature extraction, and (3) classification. Convolutional Neural Network (CNN) is employed for the feature extraction and classification tasks. The system remains invariant to scaling, brightness, and rotation. Experimental results demonstrate that the proposed system achieved an accuracy of 99.86% for all datasets.
Sludge worm samples were collected from the Tigers River sediment during the period from November 2018 to June 2019 in Al Sarafiya District/ Baghdad- Iraq. Biometric morphological measurements focusing on the form of penis sheath and chaetal morphology were used for species identification, in addition to molecular analysis by amplification of conserved 18s rRNA encoding gene using ITS1 and ITS4 universal primers.According to the morphological measurement records, the results revealed the existence of Limnodrilus hoffmeisteri Claparede 1862, L. claparedeianus Ratzel, 1868 and L. cervix Brinkhurst 1963. Other two groups of specimens, with short penis sheath, were identified by molecular technology as L
Eimeriosis is a major problem affecting ruminants worldwide. The disease is primarily caused by Eimeria species, which are specialized for each host and grow in the small and large intestine of animals. The losses due to subclinical infections (especially weight loss) and clinical disease (diarrhea) make the species of this genus a very significant economic concern. Therefore, this study was conducted in some areas of Wasit Province. A total of 180 fecal samples from goats, of both sexes and covering different age groups and months, were collected. All fecal samples were examined microscopically, and 75 positive fecal samples were taken for molecular examination and further analyzed using conventional PCR, sequencing and phylogeneti
... Show MoreThis study was conducted to determine the Immuno – globulins and complements quantitatively. The result revealed that the concentration of Immunoglobulin M(IgM) was increased significantly in patient group comparing with control group . The concentration of complement protein C4 was increased significantly in patient group comparing with control group.IgG of Candida albicans was detected by using ELISA Technique, the result indicated also that this antibody was found in 628% of the women who infected with Vulvovaginal Candidiasis. The sensitivity and specificity of the test were 63% and 89% respectively.
This research aims at building a proposed training program according to the self-regulated strategies for the mathematics teachers and to identify the effect of this program on relational Mathematics of teachers. The sample of the research was (60) Math teachers; (30) teachers as experimental group and (30) teachers as control group. The results of the current research reacheded that the proposed training program according to some self-managed learning strategies, meets the needs of trainees with remarkable effectiveness to improve the level of their teaching performance to achieve the desired goals. Training teacher according to self-managed learning strategies is effective in bringing about the transition of training to their students
... Show More