Biometrics represent the most practical method for swiftly and reliably verifying and identifying individuals based on their unique biological traits. This study addresses the increasing demand for dependable biometric identification systems by introducing an efficient approach to automatically recognize ear patterns using Convolutional Neural Networks (CNNs). Despite the widespread adoption of facial recognition technologies, the distinct features and consistency inherent in ear patterns provide a compelling alternative for biometric applications. Employing CNNs in our research automates the identification process, enhancing accuracy and adaptability across various ear shapes and orientations. The ear, being visible and easily captured in an image, possesses the unique characteristic that no two individuals share the same ear patterns. Consequently, our research proposes a system for individual identification based on ear traits, comprising three main stages: (1) pre-processing to extract the ear pattern (region of interest) from input images, (2) feature extraction, and (3) classification. Convolutional Neural Network (CNN) is employed for the feature extraction and classification tasks. The system remains invariant to scaling, brightness, and rotation. Experimental results demonstrate that the proposed system achieved an accuracy of 99.86% for all datasets.
Active worms have posed a major security threat to the Internet, and many research efforts have focused on them. This paper is interested in internet worm that spreads via TCP, which accounts for the majority of internet traffic. It presents an approach that use a hybrid solution between two detection algorithms: behavior base detection and signature base detection to have the features of each of them. The aim of this study is to have a good solution of detecting worm and stealthy worm with the feature of the speed. This proposal was designed in distributed collaborative scheme based on the small-world network model to effectively improve the system performance.
In this paper, a Modified Weighted Low Energy Adaptive Clustering Hierarchy (MW-LEACH) protocol is implemented to improve the Quality of Service (QoS) in Wireless Sensor Network (WSN) with mobile sink node. The Quality of Service is measured in terms of Throughput Ratio (TR), Packet Loss Ratio (PLR) and Energy Consumption (EC). The protocol is implemented based on Python simulation. Simulation Results showed that the proposed protocol provides better Quality of Service in comparison with Weighted Low Energy Cluster Hierarchy (W-LEACH) protocol by 63%.
Pseudomonas aeruginosa is the most common opportunistic pathogen causing morbidity and mortality in hospitalized patients due to its multiple resistance mechanisms. Therefore, as a therapeutic option becomes restricted, the search for a new agent is a preference. So P. aeruginosa is an extremely versatile Gram-negative bacterium capable of thriving in a broad spectrum of environments, and this performs main problems to workers in the field of health. One hundred and fifty samples were collected from different sources from Baghdad hospitals, divided into two main groups: clinical (100) specimens and (50) samples as an environmental, collected from October 2019 to the March 2020. All of these samples were cultured by specific and differential
... Show MoreAspergillus fumigatus considered to be the most important species to cause respiratory infection cases in both humans and animals especially in cats in the last decades. In this study, we focused on the isolation and identification of Aspergillus fumigates by collecting 40 samples in deferent veterinary clinics and stray cats in Baghdad city, during the period (October 2021 to January 2022), all samples were cultured on Sabouraud dextrose agar and malt extract agar. The isolates identified by the laboratory methods, it’s depend on macroscopic and microscopic appearance. The results showed that (40) swaps taken from the pharynx of infected cats, included: Aspergillus fumigatus 16 (40%), Aspergillus spp. 7 (17.5%), Aspergillus niger
... Show MoreThe study included the investigation of fungi ringed and inventory and Aflatoxins in rice and recorded average temperatures and humidity 22.75 degree Celsius and 13.2% respectively were obtained 1356 isolation innate possible diagnosis 15 species inherent in rice imported back to 8 races represented races b Fusarium , Cladosporium, Aspergillus and Alternaria
Opportunistic fungal infections due to the immune- compromised status of renal transplant patients are related to high rates of morbidity and mortality regardless of their minor incidence. Delayed in identification of invasive fungal infections (IFIs), will lead to delayed treatment and results in high mortality in those populations. The study aimed to assess the frequency of invasive fungal infection in kidney transplant recipients by conventional and molecular methods. This study included 100 kidney transplant recipients (KTR) (75 males, and 25 females), collected from the Centre of Kidney Diseases and Transplantation in the Medical City of Baghdad. Blood samples were collected during the period from June 2018 to April 2019. Twent
... Show MoreThe plants of genus Heliotropium L. (Boraginaceae) are well-known for containing the toxic metabolites called pyrrolizidine alkaloids (PAs) in addition to the other secondary metabolites. Its spread in the Mediterranean area northwards to central and southern Europe, Asia, South Russia, Caucasia, Afghanistan, Iran, Pakistan, and India, Saudi Arabia, Turkey, and over lower Iraq, Western desert. The present study includes the preparation of various extracts from aerial parts of the Iraqi plant. Fractionation, screening the active constituent, and identification by chromatographic techniques were carried out.Heliotropium europaeum
... Show More