Biometrics represent the most practical method for swiftly and reliably verifying and identifying individuals based on their unique biological traits. This study addresses the increasing demand for dependable biometric identification systems by introducing an efficient approach to automatically recognize ear patterns using Convolutional Neural Networks (CNNs). Despite the widespread adoption of facial recognition technologies, the distinct features and consistency inherent in ear patterns provide a compelling alternative for biometric applications. Employing CNNs in our research automates the identification process, enhancing accuracy and adaptability across various ear shapes and orientations. The ear, being visible and easily captured in an image, possesses the unique characteristic that no two individuals share the same ear patterns. Consequently, our research proposes a system for individual identification based on ear traits, comprising three main stages: (1) pre-processing to extract the ear pattern (region of interest) from input images, (2) feature extraction, and (3) classification. Convolutional Neural Network (CNN) is employed for the feature extraction and classification tasks. The system remains invariant to scaling, brightness, and rotation. Experimental results demonstrate that the proposed system achieved an accuracy of 99.86% for all datasets.
With the freedom offered by the Deep Web, people have the opportunity to express themselves freely and discretely, and sadly, this is one of the reasons why people carry out illicit activities there. In this work, a novel dataset for Dark Web active domains known as crawler-DB is presented. To build the crawler-DB, the Onion Routing Network (Tor) was sampled, and then a web crawler capable of crawling into links was built. The link addresses that are gathered by the crawler are then classified automatically into five classes. The algorithm built in this study demonstrated good performance as it achieved an accuracy of 85%. A popular text representation method was used with the proposed crawler-DB crossed by two different supervise
... Show MoreOne of the common geotechnical problems is the construction on soft soil and the improvement of its geotechnical properties to meet the design requirements. A stone column is one of the well-known techniques used to improve the geotechnical properties of soft soils. Sometimes thick layers of soft soil imposed the designer to use floating stone columns for improvement of such soil; in this case, the designer will be lost the end bearing of the stone column. In this study, the effects of several patterns of floating stone columns distribution under footing on the bearing capacity of soil and the distribution of excess porewater pressure are investigated. The soft soil used in this study has a very low undrained shear strength (cu) of
... Show MoreThis research examines the phonological adaptation of pure vowels in English loanwords in Iraqi Arabic (IA). Unlike previous small-scale studies, the present study collected 346 loanwords through document review and self-observation, and then analyzed them using quantitative content analysis to identify the patterns of pure vowel adaptation involved in incorporating English loanwords into IA. The content analysis findings showed that most pure vowel adaptations in English loanwords in IA follow systematic patterns and may thus be attributed to specific characteristics of both L1 and L2 phonological systems. Specifically, the findings suggest that the IA output forms typically preserve the features of the input pure vowel to the maxi
... Show MoreIn this note, we present a component-wise algorithm combining several recent ideas from signal processing for simultaneous piecewise constants trend, seasonality, outliers, and noise decomposition of dynamical time series. Our approach is entirely based on convex optimisation, and our decomposition is guaranteed to be a global optimiser. We demonstrate the efficiency of the approach via simulations results and real data analysis.
Background : Breast cancer is the most common cancer of
women. When breast cancer is detected and treated early,
the chances for survival are better. Surgery is the most
important treatment for non-metastatic breast cancer.
Al-Kindy Col Med J 2008 Vol.5(1) 40 Original Article
Objectives : The aim of this study is to review different
clinical presentation and to evaluate types of surgical
procedures and complications in treatment of nonmetastatic breast cancer.
Method : During the period from Jun 1998 to May 2005,
93 patients with non-metastatic breast cancer were
diagnosed and treated surgically in 2 hospitals in Baghdad (
Hammad Shihab military hospital and Al-Kindy teaching
hospital).
Results : Wo
The present paper examines the genre of death notices in Iraqi newspapers in terms of its schematic and socio-cultural structure. Adopting Swales' [1990] rhetorical approach to genre analysis, the study has examined a corpus of 150 death texts
One study whose importance has significantly grown in recent years is lip-reading, particularly with the widespread of using deep learning techniques. Lip reading is essential for speech recognition in noisy environments or for those with hearing impairments. It refers to recognizing spoken sentences using visual information acquired from lip movements. Also, the lip area, especially for males, suffers from several problems, such as the mouth area containing the mustache and beard, which may cover the lip area. This paper proposes an automatic lip-reading system to recognize and classify short English sentences spoken by speakers using deep learning networks. The input video extracts frames and each frame is passed to the Viola-Jone
... Show MoreLK Abood, RA Ali, M Maliki, International Journal of Science and Research, 2015 - Cited by 2
The aim of this paper is to approximate multidimensional functions f∈C(R^s) by developing a new type of Feedforward neural networks (FFNS) which we called it Greedy ridge function neural networks (GRGFNNS). Also, we introduce a modification to the greedy algorithm which is used to train the greedy ridge function neural networks. An error bound are introduced in Sobolov space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result in [1]).