Biometrics represent the most practical method for swiftly and reliably verifying and identifying individuals based on their unique biological traits. This study addresses the increasing demand for dependable biometric identification systems by introducing an efficient approach to automatically recognize ear patterns using Convolutional Neural Networks (CNNs). Despite the widespread adoption of facial recognition technologies, the distinct features and consistency inherent in ear patterns provide a compelling alternative for biometric applications. Employing CNNs in our research automates the identification process, enhancing accuracy and adaptability across various ear shapes and orientations. The ear, being visible and easily captured in an image, possesses the unique characteristic that no two individuals share the same ear patterns. Consequently, our research proposes a system for individual identification based on ear traits, comprising three main stages: (1) pre-processing to extract the ear pattern (region of interest) from input images, (2) feature extraction, and (3) classification. Convolutional Neural Network (CNN) is employed for the feature extraction and classification tasks. The system remains invariant to scaling, brightness, and rotation. Experimental results demonstrate that the proposed system achieved an accuracy of 99.86% for all datasets.
Let G be a graph with p vertices and q edges and be an injective function, where k is a positive integer. If the induced edge labeling defined by for each is a bijection, then the labeling f is called an odd Fibonacci edge irregular labeling of G. A graph which admits an odd Fibonacci edge irregular labeling is called an odd Fibonacci edge irregular graph. The odd Fibonacci edge irregularity strength ofes(G) is the minimum k for which G admits an odd Fibonacci edge irregular labeling. In this paper, the odd Fibonacci edge irregularity strength for some subdivision graphs and graphs obtained from vertex identification is determined.
The shortage in surface water quantities led to a shift in dependence on the groundwater as an alternative water source in southern parts of Iraq. The groundwater is decreasing in quantity and water quality is degrading due to different factors. Therefore, it is important to assess the groundwater quality of the Missan Governorate of the country by analyzing the physicochemical parameters and distinguishing the probable sources of contaminants in the area. The present study used water quality diagrams and statistical methods such as factor analysis and agglomerative cluster analysis to determine the sources of chemical ions in the forty-four groundwater samples collected from wells in the study area. In addition, the Water Quality Index (WQ
... Show MoreThe guava plant, Psidium guajava L., serves as proof of the abundant donations of nature, providing a delicious guava fruit; this plant is rich in groups of medicinal and nutritional benefits. Guava belonging to the Myrtaceae family, many previous studies reported many phytochemical constituents in its leaves that have many pharmacological activities and medicinal properties; this study focuses on the isolation, structural elucidation and calculation concentration of flavonoids, assessment of the cytotoxic activityof hyperin from Psidium guajava leaves newly cultivated in Iraq. The isolation process involved the use of thin-layer chromatography (TLC) and preparative high-performance liquid chromatography (PHPLC) and structural eluci
... Show MoreThe railways network is one of the huge infrastructure projects. Therefore, dealing with these projects such as analyzing and developing should be done using appropriate tools, i.e. GIS tools. Because, traditional methods will consume resources, time, money and the results maybe not accurate. In this research, the train stations in all of Iraq’s provinces were studied and analyzed using network analysis, which is one of the most powerful techniques within GIS. A free trial copy of ArcGIS®10.2 software was used in this research in order to achieve the aim of this study. The analysis of current train stations has been done depending on the road network, because people used roads to reach those train stations. The data layers for this st
... Show MoreThe historical center's landscape suffers from neglect, despite their importance and broad capabilities in enhancing the cultural value of the historical center, as landscape includes many heterogeneous human and non-human components, material and immaterial, natural and manufactured, also different historical layers, ancient, modern and contemporary. Due to the difference in these components and layers, it has become difficult for the designer to deal with it. Therefore, the research was directed by following a methodology of actor-network theory as it deals with such a complex system and concerned with an advanced method to connect the various components of considering landscape as a ground that can include various elements and deal wi
... Show More