Background: While warfarin and direct oral anticoagulants (DOACs) are used to manage thromboembolic events, they possess several features that impact adherence. Objective: To assess medication adherence and self-efficacy in patients receiving warfarin or DOAC treatment. Methods: A cross-sectional study was performed at Ibn Al-Bitar Hospital in Baghdad from December 2022 to May 2023 on patients receiving either warfarin or DOACs. The Arabic version of the Adherence to Refills and Medications Scale (ARMS) questionnaire and the Self-Efficacy for Managing Chronic Disease 6-Item Scale (SES6C) questionnaire were used to assess adherence and self-efficacy. Results: 181 patients were enrolled in the study, of whom 56.9% received warfarin and 43.1% received DOACs. The mean ARMS score was 13.71, and 81.77% of the patients were adherent to anticoagulant therapy. There was a significant difference in adherence between the warfarin and DOAC groups. The mean SES6C score for the participants was 50.01. Patients in the DOAC group had significantly higher self-efficacy compared to those in the warfarin group. The adherence score correlated significantly with patients’ gender, education level, hospitalization and duration of anticoagulant use, while the SES6C score did not correlate with any of the independent variables. There was a significant negative correlation between self-efficacy scores and medication adherence scores. Conclusions: Patients receiving DOACs showed a higher self-efficacy to manage chronic diseases and lower medication adherence as compared to warfarin. Higher self-efficacy was associated with higher adherence to treatment.
Deep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for d
... Show MoreTrickle irrigation is a system for supplying filtered water and fertilizer directly into the soil and water and it is allowed to dissipate under low pressure in an exact predetermined pattern. An equation to estimate the wetted area of unsaturated soil with water uptake by roots is simulated numerically using the HYDRUS-2D/3D software. In this paper, two soil types, which were different in saturated hydraulic conductivity were used with two types of crops tomato and corn, different values of emitter discharge and initial volumetric soil moisture content were assumed. It was assumed that the water uptake by roots was presented as a continuous sink function and it was introduced into Richard's equation in the unsaturated z
... Show MoreImproving" Jackknife Instrumental Variable Estimation method" using A class of immun algorithm with practical application
In this paper, third order non-polynomial spline function is used to solve 2nd kind Volterra integral equations. Numerical examples are presented to illustrate the applications of this method, and to compare the computed results with other known methods.
Case Report.
To present a case of a previous complicated mandibular orthognathic surgery that aimed to setback the mandible in a female cleft lip and palate (CLP) patient, which led to bone necrosis on one side with subsequent severe mandibular deviation and facial asymmetry. We additionally reviewed the previous reports of similar complications, the pathophysiology and the factors that could lead to this dreadful result.
A 27-year-old female patient presented with a severe dentofacial deformity secondary to a complicated bilateral sagittal spli
Double-layer micro-perforated panels (MPPs) have been studied extensively as sound absorption systems to increase the absorption performance of single-layer MPPs. However, existing proposed models indicate that there is still room for improvement regarding the frequency bands of absorption for the double-layer MPP. This study presents a double-layer MPP formed with two single MPPs with inhomogeneous perforation backed by multiple cavities of varying depths. The theoretical formulation is developed using the electrical equivalent circuit method to calculate the absorption coefficient under a normal incident sound. The simulation results show that the proposed model can produce absorption coefficient with wider absorption bandwidth compared w
... Show MoreIncorporating the LiDAR sensor in the most recent Apple devices represents a substantial development in 3D mapping technology. Meanwhile, Apple's Lidar is still a new sensor. Therefore, this article reviews the potential uses of the Apple Lidar sensor in various fields, including engineering and construction, focusing on indoor and outdoor as-built 3D mapping and cultural heritage conservation. The affordable cost and shorter observation times compared to traditional surveying and other remote sensing techniques make the Apple Lidar an attractive choice among scholars and professionals. This article highlights the need for continued research on the Apple LiDAR sensor technology while discussing its specifications and limitations. A
... Show MoreThe present study focuses on synthesizing solar selective absorber thin films, combining nanostructured, binary transition metal spinel features and a composite oxide of Co and Ni. Single-layered designs of crystalline spinel-type oxides using a facile, easy and relatively cost-effective wet chemical spray pyrolysis method were prepared with a crystalline structure of MxCo3−xO4. The role of the annealing temperature on the solar selective performance of nickel-cobalt oxide thin films (∼725 ± 20 nm thick) was investigated. XRD analysis confirmed the formation of high crystalline quality thin films with a crystallite si